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Abstract— Introduction: Mesenchymal stem cells (MSCs) transplantation for the treatment of acute hindlimb 
ischemia is recently attracting the attention of many scientists. Identifying the role of donor cells in the host is a 
crucial factor for improving the efficiency of treatment. This study evaluated the injury repair role of xenogeneic 
adipose-derived stem cell (ADSC) transplantation in acute hindlimb ischemia mouse model. Methods: Human 
ADSCs were transplanted into the limb of ischemic mouse. The survival rate of grafted cells and expression of human 
VEGF-R2 and CD31 positive cells were assessed in the mouse. In addition, the morphological and functional 
recovery of ischemic hindlimb was also assessed. Results: The results showed that one-day post cell transplantation, 
the survival percentage of grafted cells was 3.62% ± 2.06% at the injection site and 15.71% ± 12.29% around the 
injection site. The rate of VEGFR2-positive cells had highest expression at 4 days post transplantation, 5.46% ± 
2.13% at the injection site; 9.12% ± 7.17% at the opposite of injection site, and 7.22% ± 4.59% at the lateral 
gastrocnemius. The percentage of CD31 positive cells increased on day 4 at the injection site to 0.8% ± 1.60%, and 
further increased on day 8 at the lateral gastrocnemius site and the opposite injection site to 1.56% ± 0.44% and 
1.17% ± 1.69%, respectively. After 14 days, the cell presentation and the angiogenesis marker expression were 
decreased to zero, except for CD31 expression at the opposite of injection site (0.72% ± 1.03%). Histological 
structure of the cell-injected muscle tissue remained stable as that of the normal muscle. New small blood vessels 
were found growing in hindlimb. On the other hand, approximately 66.67% of mice were fully recovered from 
ischemic hindlimb at grade 0 and I after cell injection. Conclusion: Thus, xenotransplantation of human ADSCs 
might play a significant role in the formation of new blood vessel and can assist in the treatment of mouse with acute 
hindlimb ischemia. 
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INTRODUCTION 

Adipose-derived mesenchymal stem cells (ADSCs) are 

popularly used for the treatment of several diseases. 

ADSCs possess the ability to proliferate and 

differentiate into several types of functional cells such 

as adipocyte, osteocyte, chondrocyte, and muscle cell 

(Halvorsen et al., 2000; Strem et al., 2005). They also 

play an important role in repairing damaged tissues. 

The role of ADSCs was demonstrated in the same way 

as that of bone marrow-derived mesenchymal stem 

cell (BM-MSC) for disease treatment (Halvorsen et al., 

2000; Strem et al., 2005). 

ADSCs are also used in xenogeneic transplantation 

because of their immunosuppressive ability (Puissant 

et al., 2005). The low expression of human leukocyte 

antigen (HLA), co-stimulatory molecules, B7 and 
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CD40 ligand, and overexpression of MHC class II and 

Fas ligand are the specific immunological 

characteristics of ADSCs. Besides, ADSCs can inhibit 

the secretion of INF-α, TNF-γ, TH1, TH2, and IL-10, 

associated with the activation of natural killer cells 

and the maturation of dendritic cells. ADSCs also 

increase the rate of synthesis of regulatory T cell 

associated with the modulation of the immune system 

(Aggarwal and Pittenger, 2005). Thus, ADSCs are 

considered as a superior source of cell therapy 

applications for the treatment of autoimmune diseases 

and controlling the graft versus host disease 

(Aggarwal and Pittenger, 2005; Polchert et al., 2008; 

Yanez et al., 2006).  

ADSCs transplanted into mice with acute hindlimb 

ischemia can differentiate into endothelial cells, 

mobilize vascular precursor cells, enhance the 

secretion of vascular growth factors to repair ischemic 

tissue, and prevent tissue damage from apoptosis. 

ADSCs could also associate with local cells and 

stimulate the formation of new blood vessel (Tongers 

et al., 2011). In hypoxia condition, ADSCs are 

mobilized to damaged tissues via interaction between 

surface receptors and ligands (Honczarenko et al., 

2006; Von Luttichau et al., 2005). Here, they secrete 

some vascular growth factors such as VEGF, HGF, 

and TGF (Lee et al., 2009; Nakagami et al., 2006). 

These growth factors express active signals to attract 

precursor cells and enhance the cell survival by 

stimulating the proliferation of endothelial cells and 

new blood vessel formation. The role of ADSCs is 

demonstrated by Jalees Rehman et al. (2004), who 

showed that ADSCs were able to secrete VEGF five 

times more as compared to normal stem cells, enhance 

proliferation, and decrease the apoptosis of 

endothelial cells in hypoxia culture conditions. As a 

result, the treatment efficiency was increased 

significantly (Rehman et al., 2004). ADSCs can also 

differentiate into endothelial cells, when cultured in a 

medium containing VEGF to take part in 

angiogenesis. They contribute in new blood vessel 

formation in hindlimb ischemia mouse models by 

stimulating the PI3K pathway of endothelial cells (Cao 

et al., 2005). The capacity to form new blood vessel 

was demonstrated by a significant increase in 

capillary density at the ADSC-injected ischemic tissue 

(Lu et al., 2009).  

In this study, we focus on the evaluation of the 

secretion and the differentiation of human adipose-

derived stem cells (hADSCs) in angiogenesis after 

acute hindlimb ischemia in mice.  

 

 

METHODS 

Establishment of acute hindlimb ischemia mouse 

model 

An acute hindlimb ischemia mice model was 

established according to published protocols of Ngoc 

Bich Vu et al. (2012) using 3-5-month-old 

immunosuppressed mice (Pham et al., 2014a; Vu, 

2013). All procedures involving animals were 

approved by the Animal Welfare Committee of the 

Stem Cell Research and Application Laboratory, 

University of Science, VNUHCM, VN. Briefly, mice 

were anesthetized by ketamine-xylazine, and were 

fixed to trays. Hairy limb was shaved and thigh skin 

was cut along approximately 1 cm. Femoral artery and 

vein were separated from muscle, and then ligated at 

2 sites, one at the femoral triangle and the other at the 

popliteal artery. An incision was performed between 

the 2 ligations. Damaged tissue recuperation was 

evaluated using graded morphological scales at the 

area of muscle necrosis, following the guidelines of 

Takako Goto et al. (2006) (Goto et al., 2006) and our 

previous studies (Pham et al., 2014b; Vu et al., 2015). 

The damage of limb was classified as Grade 0 (G0), if 

no change; GI, if necrosis in nail and toes; GII, if 

necrosis in feet; GIII, if necrosis in knee; and GIV, if 

total leg necrosis. 

Cell culture  

hADSCs were isolated according to our previous 

study (Van Pham et al., 2013), with the following 3 

criteria: (1) hADSCs maintained the differentiation 

potential to form chondrocyte and adipocyte (2) 

possessed plastic adherent ability and fibroblastic-like 

appearance and (3) expressed CD44, CD73, and CD90 

and did not express CD14, CD34, and CD45. hADSCs 

were cultured in MSCcult medium containing 

DMEM/F12 supplemented with 10% fetal bovine 

serum, 1% antibiotic, 100× antimycotic, 10 ng/mL EGF, 

and 10 ng/mL bFGF (Sigma, USA) in a humidified 

incubator with 5% atmospheric CO2 at 37°C. On 

reaching 70-80% confluence, hADSCs were detached 

by treating with 0.25% trypsin/EDTA and sub-

cultured in fresh medium. 
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Transduction of hADSCs with green fluorescent 

protein (GFP)-lentivirus 

GFP lentivirus-transduced hADSCs were used for 

labeling the cells to assess the role of the transplanted 

cell in the host. copGFP control lentiviral particles 

(Santacruz, USA) are lentiviral particles containing a 

copGFP coding construct for copGFP expression in 

mammalian cells after transduction. The transduction 

of lentiviral-activated particles was carried out 

according to the manufacturer’s instructions. Briefly, 

1.5 × 105 – 2.5 × 105 cells were seeded in a 6-well tissue 

culture flask. Polybrene (8 μg/mL) (Sigma, USA) was 

added after approximately 24 h. After one day, fresh 

medium without polybrene was replaced and copGFP 

lentiviral particles were supplemented into the 

medium. GFP lentivirus-transduced cells were 

cultured for 7 days. The cells were further sub-

cultured and medium replenished, if needed.  

Cells stably expressing copGFP were isolated from 

MSCcult medium, supplemented with puromycin (8 

μg/mL) (Sigma), and observed under fluorescence 

microscopy to ensure that gene transduction was 

successful.  

The role of transplanted cells in the host 

Six-to-twenty-week-old acute hind limb ischemia mice 

were injected with GFP-transduced hADSCs (GFP-

hADSCs) with a dose of 106 cells/100 μL phosphate 

buffer saline (PBS) at the ligature blood vessel.  

To evaluate the transplanted cell presentation at 

ischemic hindlimb, the mice were anesthetized and 

scanned by iBox Explorer Imaging Microscope system. 

The GFP-fluorescence signals in the ischemic hindlimb 

were imaged under UV light until 8 days after cell 

transplantation. The images were recorded and 

analyzed by Vision WorksLS Image Acquisition and 

Analysis Software.  

The survival rate of the transplanted cells at the 

ischemic hindlimb was assessed by flow cytometry. 

Thigh muscle tissue of GFP-hADSC transplanted mice 

was collected. Muscle tissue was then separated to 3 

parts: the cell injection site (IS), the opposite of the 

injection site (OIS), and the lateral gastrocnemius site 

(LGS) (Fig.5C). The muscle tissue was finely cut and 

trypsinized using 0.5% Trypsin/EDTA to detach single 

cells. The rate of GFP-positive cells was analyzed by 

CellQuest Pro software (BD Biosciences). These single 

cells were also evaluated by analyzing the expression 

of the human angiogenic marker in the mouse by 

labeling with anti VEGFR2-PE and CD31-PE (BD 

Biosciences), and incubated at room temperature for 

15 min. Finally, labeled cell population was analyzed 

by flow cytometer and CellQuest Pro software. 

H&E stain  

Muscle tissues were fixed in 4% paraformaldehyde for 

24 h. Then, the muscle tissues were transferred to 30% 

sucrose until they sink to the bottom. Tissue sections 

were frozen, then cut into 10-μm-thick section and 

mounted on a slide. Slides were stained with 

hematoxylin and eosin. Tissue structure was assessed 

under the microscope.  

Evaluating recuperation of acute hindlimb ischemia 

mouse 

Damaged tissue recuperation was evaluated by using 

graded morphological scales representing an area of 

muscle necrosis following the guidelines of Takako 

Goto et al. (2006) (Goto et al., 2006). Briefly, the 

damage of limb was classified as Grade 0 (G0), if no 

change; GI, if necrosis in nail and toes; GII, if necrosis 

in feet; GIII, if necrosis in knee; and GIV, if total leg 

necrosis.  

Statistical analysis  

All the results were analyzed by using the GraphPad 

Prism 6.0 software and Microsoft Office 2011. 

Differences were considered significant at p ≤ 0.05.  

 

 

RESULTS  

Characteristics of transplanted cells 

The morphology of GFP-hADSCs was similar to that 

of fibroblasts (Fig. 1A). GFP-hADSCs were bright 

green under the fluorescence microscope (Fig. 1B) and 

the percentage of GFP-positive hADSCs was over 97% 

(Fig. 1C).  

On the other hand, expression analysis of specific 

factors on MSC surface showed that ADSC was 

positive to VEGFR2 (100%) (Fig. 1E), but negative to 

CD31 (1.48% ± 0.11% positive) (Fig. 1F). 
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CD31 is a specific marker of differentiation of hADSC 

to endothelial cell. This study investigated endothelial 

differentiation of GFP-hADSCs by estimating the 

percentage of human CD31-positive cells in mouse. 

When GFP-hADSCs were transplanted in the mouse 

with acute hindlimb ischemia, the percentage of 

CD31-positive cells increased to the highest on day 4 

at IS, approximately 0.8% ± 1.60% (n=13). However, it 

increased to the highest on day 8 at LGS and OIS, 

approximately 1.56% ± 0.44% (n=9) and 1.17% ± 1.69% 

(n=1), respectively. On the other hand, it was highest 

at LGS on day 1 after transplantation, and reached 

1.33% ± 2.05% (n=8), but not significantly different, 

when compared to IS and OIS. Cells in the hindlimb 

expressed CD31 at all sites on day 8, and reached 

0.66% ± 0.57% (n=13) at IS, 1.17% ± 1.68% (n=10) at 

OIS, and 1.56% ± 1.44% (n=9) at LGS. On day 14, the 

rate of CD31 positive cells was decreased, compared 

to day 8 after transplantation (Fig. 4D-F). Therefore, 

GFP-hADSCs could take part in endothelial 

differentiation of angiogenesis in mouse.  

GFP-hADSCs stimulated the new blood vessel 

formation 

New blood vessels were observed in GFP-hADSCs-

injected acute hindlimb ischemic mice. The tiny blood 

vessels could be observed visually. New blood vessels 

had appeared in all the three areas (Fig. 5C). 

However, the density of new blood vessels at the LGS 

was higher than that at the OIS and IS. On the other 

hand, the density of blood vessels was higher in the 

GFP-hADSCs group as compared with the PBS group 

(Fig. 5B) and normal mice (Fig. 5A). Thus, GFP-

hADSCs contributed in the formation of new blood 

vessels in mouse with acute hindlimb ischemia. 

 

 

Figure 5. New blood vessel formation in acute hindlimb ischemic mouse after GFP-hADSCs transplantation. Distribution of 

blood vessel in the normal hindlimb compare to in the hADSC transplanted limb and PBS- injected limb at the fourth day. A high 

density of small blood vessels was presented at the lateral gastrocnemius site (LGS). A lower density was observed at the opposite 

of injection site (OIS) and injection site (IS).  

 

 

GFP-hADSCs participated in restoring tissue 

structure better than no treatment  

In a normal tissue, the skeletal muscle cells are 

arranged into bundles, and blood vessels (Yellow 

narrow) are scattered in the bundles (Fig. 6). In this 

study, the muscle bundles had broken structures, and 

muscle cells were incoherently arranged on day 3 in 

both the PBS and GFP-hADSCs-injected ischemic 

tissue. However, adipocyte formation was observed in 

the PBS group (Black narrow) from day 15 to 30, but 

new muscle cell (Green narrow) was found growing 

in the GFP-hADSCs group. On the other hand, there 

was new blood vessel formation in both the groups; 

however, the high density of small vessels was 

identified in the GFP-hADSCs group. This showed 

that GFP-hADSCs played an important role in 

remodeling damaged tissue, as in angiogenesis. 
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Figure 6. Muscle histological structure. Hematoxylin and eosin stained muscle from normal mice, GFP-hADSCs and PBS- injected 

ischemic limb. Note the angiogenesis (Yellow narrow) and muscle (Green narrow) formation at the GFP-hADSCs group and 

adipocyte (Black narrow) formation at the PBS group.  

 

 

Recuperation of acute ischemic hindlimb  

One day post transplantation, approximately 60% of 

mice had signs of tenderness, swelling, and skin 

crimson. The mice's rate of recovery from limb 

ischemia and necrosis with GI was 57.78% (n=18). 

However, 22.23% of mice had serious injury with GII, 

GIII, and GIV. There were approximately 66.66% of 

mice without any damage or necrosis with GI after 

day 14 in the PBS injected-ischemic mice and about 

33.34% of mice from GII to GIV (n=18). Thus, the 

recovery of GFP-hADSCs - transplanted acute 

ischemic hindlimb was better than non-treated limb.  

 

 

DISCUSSION 

The disruption of blood flow leads to the lack of 

oxygen and nutrient supply to the tissue. This is 

established as hypoxia microenvironment at ischemic 

locations. In hypoxic condition, several inflammatory 

chemokines such as IL-1, TNF-α, TGF-β, and PDGF 

(Fox et al., 2007) are secreted to attract several cell 

types, which are able to repair the wound tissue 

(Overall et al., 1991; Ries and Petrides, 1995). hADSCs 

are one of the MSC sources possessing ideal wound-

healing properties. In the host, hADSCs would be able 

to migrate and homing to damaged tissue, and 

stimulated to express receptors such as CXCR4 and 

CX3CR1, which play an important role in the homing 

of hADSCs (Togel et al., 2005; Zhuang et al., 2009) via 

Akt, ERK and p38 signal transduction pathways (Ryu 

et al., 2010). In other studies, hADSCs also exhibit 

several receptors associated with the ability of 

migration, such as CCR1, CCR4, CXCR5, CXCR6, 

CCR7, CCR9, and CCR10 (Honczarenko et al., 2006; 

Von Luttichau et al., 2005). In addition, hADSCs also 

express adhesion molecules such as integrin ligands, 

integrins, and selectins (Rüster et al., 2006). These 

molecules bind to ligands on the surface of the 

endothelial cells after hADSCs are stimulated by TNF-

α from the damaged tissue (Rüster et al., 2006). 

Previous reports demonstrated that the migration 

involved the binding of VLA-4 on MSCs to VCAM-1 

on the endothelial cells (Rüster et al., 2006). 

Furthermore, inflammatory markers stimulate 

hADSCs to produce matrix metalloproteinases 

(MMPs), which assist hADSCs to migrate across 

endothelial cells, lining the blood vessels into the 

injured tissue. Wenhui Jiang et al. (2006) showed that 

MSCs injected into the myocardium were homing to 

ischemic sites (Jiang et al., 2006). These studies have 

shown clear evidence of the migration patterns of 

hADSCs to damaged tissues. In our study, hADSCs 

were present not only at the local IS, but also were 

present surrounding the IS such as the OIS and LGS. 

This showed that transplanted cell migrated to other 

areas as well.  

The cell migration was evaluated by measuring the 

fluorescence intensity reduction at the IS. However, 

the decrease in fluorescent intensity at the IS may also 

be because of the graft cell apoptosis or/and necrosis 

in the host. Transplanted cells can encounter with the 

lack of nutrients in the host (Forte et al., 2011). In 

ischemic condition, several processes such as the 

accumulation of metabolic wastes, oxidative stress, 
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and the lack of nutrients and oxygen usually occurs, 

(Menon et al., 2014) leading to danger in the 

transplanted cells. D. Majumdar’s research also 

showed that the survival of human mesenchymal 

stromal cells is affected in ischemic microenvironment 

(Majumdar et al., 2013).  

In hypoxia condition, ADSCs are stimulated to 

proliferate and exhibit wound-healing function (Lee et 

al., 2009; Nakagami et al., 2006). ADSCs are able to 

differentiate into endothelial cell, and secrete 

cytokines and angiogenesis growth factors such as 

VEGF, HGF, and FGF (Tongers et al., 2011). Some of 

the VEGF forms bind to its receptor such as VEGF-R2 

(Flk-1/KDR), which is expressed almost exclusively in 

the endothelial cells (Neufeld et al., 1999). By the 

interaction of VEGF and VEGF-R2, vascular 

permeability was induced (Clauss, 2000; Henry et al., 

2003; Hershey et al., 2003). VEGF binding stimulated 

proliferation and decreased apoptosis of endothelial 

cells, leading to the increased efficiency of ischemic 

hindlimb treatment. In addition, VEGF prevents 

apoptosis through phosphatidylinositol (PI)-3-kinase 

Akt pathway or through the stimulation of anti-

apoptosis Bcl-2 and A1 factors production in 

endothelial cells (Karar and Maity, 2011; Xiao et al., 

2014). PI-3-kinase Akt pathway activates vascular 

growth factors such as eNOS and HIF-1α. In normal 

conditions, HIF-1α subunit is degraded by the 

hydroxylation of proline residues 402 and 564(Bruick 

and McKnight, 2001). In contrast, HIF-1 α dimerizes 

with HIF-1β into functional heterodimer that can 

activate transcription of target genes such as VEGF in 

a hypoxia microenvironment (Wang et al., 1995). 

eNOS is phosphorylated through HSP90-, which 

functions to express VEGF and activates PI3K/Akt 

pathway to produce nitric oxide (NO). The 

overexpression of HIF-1α leads to exhibit expression 

of VEGF (Semenza, 2003). The binding of VEGF to 

VEGFR2 not only phosphorylates proteins associated 

with the proliferation and survival of endothelial cells, 

but also forms blood vessels and increases the 

permeability of microvascular (Clauss, 2000; Flamme 

et al., 1995).  

While hADSCs survived in the mouse with acute 

hindlimb ischemia, microenvironment signals assisted 

in accelerating angiogenesis pathways via the 

interaction of VEGF and VEGFR2 on the surface (Koch 

and Claesson-Welsh, 2012). The presence of VEGFR2 

in the microenvironment showed that VEGF 

expression was stimulated. However, VEGF-R2 

expression in vascular precursor cells depends on the 

stage of angiogenesis. VEGF expression was 

significantly increased in damaged tissues and 

assisted in all angiogenic processes, such as 

proliferation, tube formation, vascular branching, and 

remodeling. Jalees Rehman et al. (2004) demonstrated 

that hADSCs could secrete VEGF 5 times more in 

hypoxic condition as compared to normal conditions 

(Rehman et al., 2004).  

Since hADSCs were differentiated into endothelial 

cells, they expressed marker CD31 (Bekhite et al., 

2014). CD31 is a molecular marker, which has certain 

roles like adherence and transfer signal molecules, not 

only between endothelial and nearby cells, but also 

between endothelial cells and circulatory blood factors 

(Bekhite et al., 2014; Cao et al., 2005). Lauren J. Ficher 

et al. (2009) suggested that grafted cells begin to 

express CD31 marker after 2 days post transplantation 

and continue expressing until the eighth day. Our 

study showed that there was no expression of CD31 

on the first day, but significantly increased on the 

eighth day. 

This study demonstrated that hADSCs can survive 

and migrate to wound tissues in mouse. Besides, they 

also express CD31 and VEGF-R2, which imply their 

ability to differentiate into endothelial cells during 

angiogenesis in acute hindlimb ischemia mouse. 

 

 

CONCLUSION  

This study suggests that hADSCs play an important 

role in the angiogenesis of acute hindlimb ischemic 

mouse model. They can migrate, support 

angiogenesis, and differentiate into endothelial cells. 

The role of hADSCs is also demonstrated by assessing 

the formation of new blood vessels and the 

recuperation of acute hindlimb ischemic mouse. This 

shows promising potential to be used as an effective 

therapy in the treatment of vascular diseases. 
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