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ABSTRACT
Introduction: Osteosarcoma (OS) is the most prevalent kind of bone cancer, but the tumorige-
nesis and underlying molecular drivers of OS remain unknown. The instability of the cell cycle
regulation system, which leads to uncontrolled cell proliferation, is a typical characteristic of car-
cinogenesis. This study aimed to investigate the expression of SKP2 in human OS and assessed
its prognostic value in OS patients. Methods: Three gene expression profile datasets GSE28424,
GSE42352 and GSE21257 were obtained from the GEO database. The Wilcoxon rank-sum test was
performed to evaluate the differential expression of the SKP2 gene between the OS and the con-
trol groups in the GSE28424 and GSE42352 datasets, and the correlation between SKP2 expression
and Huvos grade was analysed in the GSE21257 dataset. Subsequently, PPI network, GO and KEGG
analyses were constructed. Furthermore, survival analysis between high SKP2 expression group
and low SKP2 expression group was performed using the Kaplan–Meier method and log-rank test.
In addition, the UALCAN database was used to investigate the association between SKP2 expres-
sion and sarcoma. Results: The expression level of SKP2 in OS cells was significantly higher than
that in normal bones and mesenchymal stem cell samples. Furthermore, the level of SKP2 expres-
sion was observed to decrease as Huvos grade increased. The PPI network was established, and
the top ten SKP2-related genes were identified, including CDKs (1, 2, 4, and 6), Cyclin A1-2, E1-2,
D1, and CDKN1A. The survival analysis showed that the elevated SKP2 expression level was signifi-
cantly related to the overall survival of OS patients. Conclusion: Our work adds to our knowledge
of SKP2's function in OS and suggests that it might be used as a therapeutic target in the future.
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INTRODUCTION
Osteosarcoma (OS) is themost prevalent kind of bone
cancer, mostly happening in young individuals aged
10 – 25 years and comprising over one-third of all
primary bone malignancies1–3. The treatment for
OS patients has progressed remarkably during the
last four decades, and the advances in therapy, es-
pecially the introduction of chemotherapy as well as
neoadjuvant chemotherapy followed by primary tu-
mour resection, have led to a dramatically ameliora-
tion in the long-term prognosis of individuals with-
out distal metastasis3–5. However, the prognosis for
advanced patients remains poor, and early diagnosis
has been restricted due to our limited understanding
of the aetiology. Besides, the tumorigenesis and un-
derlying molecular drivers of OS remain unknown.
Thus, identifying novel effective biomarkers and drug
targets is the key to understanding the development
and progression of OS and to improve patient survival
rates.

The instability of the cell cycle regulation system,
which leads to uncontrolled cell proliferation, is a
typical characteristic of carcinogenesis, and a vari-
ety of regulatory factors in the cell cycle are de-
graded through the ubiquitin-proteasome pathway.
SKP2 (S-Phase Kinase-Associated Protein 2), also
named FBXL1 (F-Box/LRR-Repeat Protein 1) or p45
(CDK2/cyclin A-associated protein p45), encodes for
a 45 kDa protein that belongs to the F-box family,
it could ubiquitinate and degrade numerous tumour
suppressor proteins such as p27, and so plays a cru-
cial role in regulating the cell cycle. SKP2 was ini-
tially identified as a pro-tumour factor in 1995, when
it was discovered to be a crucial part for the S-phase
of the cyclin A — CDK2 kinase in several trans-
formed cells6. It was found that SKP2 was highly ex-
pressed and played a major role in carcinogenesis in
numerous kinds of malignancies, including soft tissue
sarcomas (STS)7, breast cancer8, hepatocellular car-
cinoma (HCC)9, pancreatic ductal adenocarcinoma
(PDAC)10, astrocytic gliomas11. To our knowledge,
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no bioinformatics study has been conducted to inves-
tigate the involvement of SKP2 in OS. Hence, in the
present study, we aimed to investigate the expression
of SKP2 in human OS cell lines and samples and as-
sessed its prognostic value in OS patients.

METHODS
Microarray data
The Gene Expression Omnibus (GEO, http://www.n
cbi.nlm.nih.gov/geo/) was used in this study. GEO,
which is established and managed by the National
Center for Biotechnology Information, National Li-
brary of Medicine, is an invaluable international re-
source that preserves and freely accesses comprehen-
sive sets of microarray data submitted by researchers
globally 12,13. The database includes data from a
wide variety of technologies, such as Serial Analysis
of Gene Expression, DNA microarray, protein array,
high-throughput nucleic acid sequencing, and Real-
Time PCR 14,15.
The search strategy we employed to identify OS-
related datasets in the GEO database was as fol-
lows: “(osteosarcoma OR OS) AND Expression
profiling by array[DataSet Type] AND Homo sapi-
ens[Organism]”. Datasets GSE2842416, GSE4235217

and GSE2125718 were eventually included and ex-
tracted after a thorough search.
The platform for GSE28424 is GPL13376 — Illumina
HumanWG-6 v2.0 expression beadchip, which con-
tains nineteen OS cell lines and four normal bones.
The platform for GSE42352 is GPL10295 — Illumina
human-6 v2.0 expression beadchip, which comprises
nineteen OS samples and twelve mesenchymal stem
cell (MSC) samples used as controls. The GSE21257
dataset, which is also based on the GPL10295 plat-
form, has fifty-three OS samples with complete clini-
copathological characteristics.

Data processing
The R software (version 4.0.5) was used to acquire
and process the expression profiling data. First, the
raw data of all datasets was obtained using the GEO-
query package (v2.58.0) and normalized and stan-
dardized using the limma package (v3.46.0). Then,
the Wilcoxon rank-sum test was performed to eval-
uate the differential expression of SKP2 gene between
the OS and the control groups in the GSE28424 and
GSE42352 datasets. In the GSE21257 dataset, the
samples were divided into a high expression group
and low expression group based on the median value
of SKP2 expression, and survival analysis was per-
formed using the Kaplan–Meiermethod and log-rank
test.

UALCAN database
UALCAN (http://ualcan.path.uab.edu) is a web-
portal with user-friendly interactive features for con-
ducting in-depth analysis of gene expression data
from The Cancer Genome Atlas (TCGA)19. The
mRNA expression of SKP2 in sarcoma tissues and
adjacent normal tissues were explored. In addition,
we also investigated the effect of SKP2 expression
level on sarcoma patient survival through the UAL-
CAN database by comparing the overall survival be-
tween the SKP2 high expression group and the SKP2
low/medium expression group.

Protein-Protein Interaction (PPI) network
construction
The STRING database, which is a tool for retrieving
and displaying the genes that a query gene appears
within clusters on the genome20, was employed to
establish the PPI network of SKP2 protein and other
proteins. The PPI network was then visualized using
the Cytoscape program21. Furthermore, Cytohubba,
a Cytoscape plug-in, was performed to detect the hub
genes that are significantly related to SKP2.

Functional and pathway enrichment analy-
sis
Gene Ontology (GO) analysis aims to standardize the
representation of gene and gene product properties
across species, comprising cell components (CC), bi-
ological process (BP) andmolecular function (MF)22.
Kyoto Encyclopaedia of Genes andGenomes (KEGG)
analysis serves as a combined database resource for
biologically interpreting totally sequenced genomes,
the process to map genes in the genome to generated
pathway maps23.
GO and KEGG were utilized to probe the molecu-
lar mechanisms and pathways related to SKP2 for
the development and prognosis of OS, and the visu-
alization of the enrichment analyses was conducted
through the cluster-Profiler package (v3.18.1), the
GOplot package (v1.0.2), and the enrichplot package
(v1.10.2) in the R language software.

RESULTS
Increased SKP2 expression in OS
The expression of SKP2 in OS cells and control cells
was compared. In GSE28424 (Figure 1A), the expres-
sion level of SKP2 in OS cell lines was significantly
higher than that in normal bones (P < 0.001). We also
found that SKP2 expressed highly inOS samples com-
pared to MSC samples in GSE42352 (P = 0.0014), as
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Figure 1: Expressionof SKP2mRNA inOSand control cells. A. GSE28424 dataset, OS cell lines and normal bone
cells; B. GSE42352 dataset, OS samples andMSC samples; C. TCGA database, sarcoma tissues and the correspond-
ing normal tissues.

shown in Figure 1B. Besides, the expression differ-
ence of SKP2 between the tumour tissues of sarcoma
and the corresponding normal tissues in the TCGA
project was additionally evaluated through the UAL-
CAN web portal (Figure 1 C), and it was statistically
significant (P < 0.001). These findings indicate that
SKP2 is expressed at an obviously high level in OS
cells.

Relationship between SKP2 expression and
Huvos grade

The Huvos grading system is widely used in the
chemotherapy assessment of OS, and it is an im-
portant parameter for predicting long-term progno-
sis. Grades I and II are considered to be poor in re-
sponse to chemotherapy, while grades III and IV are
regarded to have a favourable response. We used the
GSE21257 dataset to perform a correlation analysis
between SKP2 expression and Huvos grade. The level
of SKP2 expressionwas observed to decrease asHuvos
grade increased (P < 0.05) (Figure 2), indicating that
the expression level of SKP2 falls as the rate of tumour

necrosis tissue increases the following chemotherapy.
This suggests that SKP2 might be used to predict the
effectiveness of OS chemotherapy.

PPI network construction
The PPI network created by STRING, which con-
sisted of 51 nodes and 709 edges, was visualized us-
ing Cytoscape to explore the functional connections
between SKP2 and the other proteins related to it
(Figure 3A). Subsequently, as shown in Figure 3 B,
the top ten related genes identified using theMaximal
Clique Centrality method in the Cytohubba plug-in
were CDKs (1, 2, 4, and 6), Cyclin A1-2, E1-2, D1,
and CDKN1A.

GO and KEGG enrichment analyses
Enrichment analyses of GO and KEGG pathway for
SKP2 and its top ten associated genes were performed
and displayed using the R software packages clus-
terProfiler, GOplot, and enrichplot (Figure 4, Ta-
ble 1 and Table S1). According to the GO en-
richment results, regarding BP, the genes were sig-
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Figure 2: SKP2 expression in osteosarcoma with different Huvos pathological grades in the GSE21257
dataset.

Figure 3: Protein-ProteinInteraction (PPI) network. A. PPI network of SKP2 and the other related proteins; B.
the top ten SKP2-related genes using cyto Hubba plug-in.
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Table 1: Top 5 results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses

GO/KEGGID Description BgRatio P value Adjusted
P value

q value Count

BP GO:0044843     cell cycle G1/S phase transition 310/18866 1.98E-20 1.11E-17 5.05E-18 11

BP GO:0000082   G1/S transition of mitotic cell
cycle

287/18866 6.16E-18 1.73E-15 7.88E-16 10

BP GO:0000079    regulation of cyclin-dependent
protein serine/threonine kinase
activity

102/18866 3.55E-14 6.56E-12 2.99E-12 7

BP GO:1904029    regulation of cyclin-dependent
protein kinase activity

106/18866 4.68E-14 6.56E-12 2.99E-12 7

BP GO:0000086    G2/M transition of mitotic cell
cycle

254/18866 2.33E-11 2.61E-09 1.19E-09 7

CC GO:0000307     cyclin-dependent protein
kinase holoenzyme complex

43/19559 9.35E-27 2.99E-25 1.08E-25 10

CC GO:1902554     serine/threonine protein kinase
complex

89/19559 2.47E-23 3.96E-22 1.43E-22 10

CC GO:1902911    protein kinase complex 104/19559 1.27E-22 1.35E-21 4.90E-22 10

CC GO:0061695    transferase complex, transfer-
ring phosphorus-containing 
groups

253/19559 1.19E-18 9.55E-18 3.46E-18 10

CC GO:0016592     mediator complex 41/19559 0.000233 0.001491 0.00054 2

MF GO:0016538      cyclin-dependent protein 
serine/threonine kinase 
regulator activity

50/18352 2.35E-16 7.29E-15 3.22E-15 7

MF GO:0019887     protein kinase regulator activity 185/18352 3.01E-12 3.90E-11 1.72E-11 7

MF GO:0030332     cyclin binding 30/18352 3.77E-12 3.90E-11 1.72E-11 5

MF 216/18352 9.00E-12 6.98E-11 3.08E-11 7

MF

GO:0019207      kinase regulator activity

GO:0004693      cyclin-dependent protein 
serine/threonine kinase activity

29/18352 1.65E-09 8.51E-09 3.75E-09 4

KEGG   hsa04110  Cell cycle 126/8095 8.35E-21 5.18E-19 1.76E-19 11

204/8095 1.99E-18 6.18E-17 2.10E-17 11KEGG   hsa05203 Viral carcinogenesis 

KEGG   hsa04218 Cellular senescence 156/8095 5.73E-17 1.18E-15 4.02E-16 10

KEGG   hsa05169 Epstein-Barr virus infection 202/8095 8.08E-16 1.25E-14 4.25E-15 10

KEGG   hsa04115 p53 signaling pathway 73/8095 4.76E-15 5.91E-14 2.01E-14 8
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Figure 4: Functional enrichment analysis. A. Biological processes (BP) analysis; B. Cell composition (CC) analysis; 
C. Molecular function (MF) analysis; D. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.

Figure 5: Kaplan–Meier analysis for overall survival based on SKP2 expression. A. Between high expression
group and low expression group in OS. B. Between high expression group and low/medium expression group
insarcoma.

nificantly enriched in cell cycle G1/S phase transi-
tion, G1/S transition of mitotic cell cycle, regula-
tion of cyclin−dependent protein serine/threonine
kinase activity, regulation of cyclin−dependent pro-
tein kinase activity, and G2/M transition of mitotic
cell cycle (Figure 4A). For CC, the genes were sig-
nificantly enriched in cyclin−dependent protein ki-
nase holoenzyme complex, serine/threonine protein
kinase complex, protein kinase complex, and trans-
ferase complex, transferring phosphorus−containing
groups (Figure 4B). Regarding MF, the genes were

significantly enriched in cyclin−dependent protein

serine/threonine kinase regulator activity, protein ki-

nase regulator activity, cyclin binding, and kinase reg-

ulator activity (Figure 4 C).The findings of the KEGG

pathway analysis, as shown in Figure 4 D, revealed

that the genes were mainly engaged in the cell cycle,

viral carcinogenesis, and cellular senescence.
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Relationship between SKP2 expression and
prognosis in OS patients
We further studied the role of SKP2 in the progno-
sis of OS patients. In the GSE21257 dataset, based on
the cut-off value, patients were split into two groups:
low expression group (26 patients) and high expres-
sion group (27 patients). The Kaplan-Meier curve
and log-rank test shown that the elevated SKP2 ex-
pression level was significantly related to the overall
survival (P < 0.01) of OS patients (Figure 5A). More-
over, the dataset in UALCAN also indicated that there
was a significant difference in survival time between
the SKP2 high expression group (65 patients) and the
SKP2medium/low expression group (194 patients) (P
= 0.017), as shown in Figure 5 B. Taken together, OS
patientswith a high level of SKP2 expressionwere pre-
dicted to have a poor prognosis.

DISCUSSION
OS is one of themost prevalent bone cancers, affecting
primarily adolescents and children and has a 5-year
overall survival rate of approximately 50% — 70%1.
The histology of OS is very variable, and its genetic
structure is unstable, resulting in poor survival for the
patients24. Hence, new prognostic biomarkers are re-
quired to assist patients with OS to improve their out-
comes.
There have been several bioinformatics studies on OS
in the past. HLA-DRA, EGR1, CXCL10, MYC, and
CXCR4 were discovered to be hub normal-primary
differentially expressed genes (DEGs) in OS25,26.
Besides, Zhang et al.27measured the amounts of
tumour-infiltrating immune cells in the OS tumour
microenvironment via the ESTIMATE algorithm-
based immune score, and they detected 191 immune-
related DEGs, with PPARG, IGHG3, PDK, CD209,
and CCL8 ranking first through fifth. Another
research studied the differential expression of cir-
cRNA in OS, they determined that circ_20403 and
circ_2137 were highly upregulated and circ_24831
and circ_32279 were highly downregulated in OS
samples, these circRNAs were significantly associated
with BP and MF28.
SKP2 encodes for a type of Leucine-rich repeat pro-
tein that belongs to the F-box family 29. SKP2 was
initially recognized as an important cell cycle regu-
lator because the ubiquitin-mediated degradation of
several regulators of cell cycle required the promo-
tion of SKP230,31. Owing to the fact that the majority
of its ubiquitinated and degraded substrates are tu-
mour suppressors, SKP2 is classified as an oncopro-
tein. Besides, many studies also suggested that SKP2
functions as an oncogene in human malignancies.

In a large-scale analysis, elevated SKP2 expression in
patients with STS was demonstrated as an indepen-
dent risk factor for disease-specific survival in females
and those who did not undergo chemo- or radiother-
apy 32. Another research showed that medium-to-
high SKP2 expression in the nucleus in ≥ 10% of the
cells was recognized in 37% of the total cases of STS
and was more frequent in the high-grade group than
in low-grade group7. Regarding breast cancer, cyto-
plasmic over-expression of SKP2 is presented in inva-
sive ductal carcinoma, positively correlated with tu-
mour grade and tumour size and inversely correlated
with patient outcomes33. In HCC, Lee et al. revealed
that LKB1 polyubiquitination mediated by Skp2 was
crucial for tumour development in vivo34; in addi-
tion, enhanced SKP2 expressionwas shown to be neg-
atively associated with apoptotic process and progno-
sis and positively associated with the increased level
of tumour cells and microvascularization9. About
PDAC, SKP2 tended to overexpress in patients with
higher tumour grade, more lymph node metastases,
greater amount of lymphatic permeation, and worse
survival10.
In this study, the role of SKP2 in OS was investigated
using a bioinformatics approach. According to our
findings, all three datasets GSE28424, GSE42352 and
TCGA determined that SKP2 was upregulated in OS,
this result was consistent with prior research. When
compared to normal human osteoblasts or human
MSC-derived osteoblasts, Zhang et al.35 found that
the levels of Skp2 mRNA were significantly higher in
both conventional and patient-derived OS cell lines.
In OS cells, elevated expression of SKP2 was deter-
mined to stimulate cell proliferation and cell cycle
progression, reduce apoptosis, and accelerate cell in-
vasion and migration36. Notably, Nagao et al.37 re-
vealed that overexpression of SKP2 induced overex-
pression of GLI2 in OS cells, resulting in enhancing
cell proliferation and promoting cell cycle progres-
sion, showing that Skp2 was an important link in the
control of cell growth in OS cells. Another study dis-
covered that SKP2 interacts with its substrate p27 to
promote OS development and stemness38. Further-
more, SKP2 might be used as a potential prognostic
and pro-metastatic biomarker. The findings of our
survival study determined that SKP2 was tightly re-
lated to prognosis inOS patients, with greater levels of
SKP2 expression having a worse prognosis. Similar to
this result, in a study of metastasis-free survival anal-
ysis in 88 untreated high-grade OS patients, the high
Skp2 group had a poorer prognosis than the low Skp2
group35. In addition, Liu et al.39 also demonstrated
that OS patients with lung metastasis with high SKP2
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TPM (Transcripts Per Million) had a worse survival
than those with low SKP2 TPM.
Moreover, on the basis of established criteria, the top
ten SKP2-related genes were selected as hub genes for
further investigation, which were CDK1-2, 4, and 6,
Cyclin A1-2, D1, E1-2, and CDKN1A. These genes
are all closely related to the cell cycle, which is a
critical process in malignant transformation. Distur-
bances in the cell cycle are frequently documented
in tumorigenesis40. A vast body of literature has
shown CDK (cyclin-dependent kinase) family mem-
bers exert as oncoproteins and are deregulated in
various malignancies, changes in CDK activity are
frequently involved in tumour-associated cell cycle
abnormalities41. CDK6 overexpression may pro-
mote OS cell proliferation and migration42, whereas
SKP2 overexpression could increase the level of CDK6
through its substrate p27. Regarding CDK2, sup-
pressing or downregulating it in OS cell lines could
stop them from proliferating43,44. Cyclin family reg-
ulates the cell progression through triggering CDK
enzymes or synthesis-related enzymes for cell cycle45.
Various prior reports have demonstrated that many
members of the cyclin family, including cyclin A, D,
and E, are significantly expressed and/or involved in
cell proliferation in OS46–51. Li et al. discovered
that hsa_circ_0003732 may enhance OS cell prolif-
eration by increasing cyclin A2 expression through
miR-54552. Besides, numerous biomarkers, such as
URG4, JARID1B, lncRNA LINC01296, promote OS
cell proliferation, metastasis and cell cycle via cy-
clin D147,48,53. Additionally, cyclin E1 overexpres-
sion was identified as associated with clinicopathol-
ogy and a potentialmarker predicting outcome forOS
patients50.
The Huvos system was used to observe the effect of
chemotherapy on high-grade OS in the GSE21257
dataset and in the present study. The Huvos grad-
ing system is a histologic evaluation system for bone
sarcomas in which the level of necrosis in relation
to the percentage of remaining viable tumour is de-
termined for histologic assessment purposes using
a semiquantitative method54. Grades 1 – 4 indi-
cate necrosis of < 50%, 50% — 90%, 90% — 99%,
and 100%, respectively, and higher grades are re-
garded to have a favourable response to chemother-
apy. Our finding showed that individuals with high
grades had a significantly low expression of SKP2 than
those with low grades, suggesting that chemother-
apy may exert its effect through inhibition of SKP2
expression. Given the crucial participation in reg-
ulating cancer progression, we believed that SKP2
might be a new target for the therapeutic treatment

of OS. A prior report showed that downregulating the
expression of SKP2 by PPARG could effectively in-
duce impaired cell proliferation and apoptosis, sug-
gesting that targeting SKP2 expression with PPARG
agonists could be a viable treatment approach55. Hi-
rotsu et al.56 discovered that suppressing SMO with
cyclopamine promoted OS cell cycle arrest as well
as prevented cell development in vitro by decreas-
ing the transcription of Skp2. Moreover, upregula-
tion of miR-506 induces Skp2 to be reduced, which
stimulates apoptosis and slows motility in OS cells57.
Interestingly, both SKP2 inhibitors (compound C1,
pevonedistat and FKA) and SKP1-SKP2 pocket in-
hibitor (compound C25) have anti-proliferative ef-
fects on pRB/p53 double-deficient OS cells38. Con-
clusively, developing SKP2 inhibitors is a feasible and
promising method for treating OS.

CONCLUSIONS
In conclusion, the expression and prognostic value
of SKP2 in OS were formulated in the present study.
SKP2 was overexpressed in OS cell lines and samples
and correlated with poor outcomes in OS patients.
Given its importance in the cell cycle, our research
suggests that SKP2 might be an important biomarker
in OS tumorigenesis as well as a potential target for
drug development and treatment.
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