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ABSTRACT
Introduction: Ulcerative colitis (UC) and other inflammatory bowel diseases (IBDs) are common
chronic, inflammatory gastrointestinal diseases. Due to their antioxidant, anti-inflammatory, and
antibacterial properties, polyphenols are beneficial in the treatment of IBD. Caffeine acid phenethyl
ester (CAPE) has been shown to have cytotoxic, antibacterial, antioxidant, and anti-inflammatory
effects. This study focuses on the biochemical and molecular levels of the mode of action of CAPE
in DSS-induced UC in rats. Methods: Thirty male Wistar rats were distributed into five groups,
with six rats in each group: group I was administered 3 mL of distilled water orally, group II was
administered CAPE (10 mg/kg.b.w.) orally, group III was administered 5% DSS orally, group IV was
administered 5% DSS and CAPE (10 mg/kg.b.w.) orally; and group V was administered 5% DSS
and sulfasalazine (100 mg/kg b.w.) orally. Results: Individually, oral treatment with CAPE or sul-
fasalazine significantly ameliorated bodyweight, DAI score, and colon length in DSS-induced colitis
and raised blood PLT count, NO, NF-kβ , and vitamin C levels. In addition, animals given CAPE had a
considerable increase in colon GSH, GPx, CAT, and SOD levels compared with rats given DSS. Com-
pared with the DSS control group, colon TBAR, IL-6, and INF-γ were lower in the CAPE-treated rats.
Histopathological examination revealed that CAPE treatment caused tissue injury and improved
vanin-1, AKT, and miRNA-203 genes in the distal colon and triggered apoptosis. Conclusions: The
gastroprotective impact of CAPE was more noticeable than sulfasalazine. CAPE treatment caused
biochemical and histopathological improvements, indicating that CAPE may have antioxidant and
anti-inflammatory effects in colitis; therefore, CAPE may be a potential therapeutic agent for the
amelioration of IBD. This finding is promising for future therapies and research goals.
Key words: Caffeine acid phenethyl ester, dextran sulfate sodium, ulcerative colitis, antioxidant
biomarkers, inflammatory mediators, Vitamin C and vanin-1

INTRODUCTION
Several factors, including genetics, microbiome, and
environmental stressors, are the causes of ulcerative
colitis (UC)1–3. In UC, the epithelial cell lining of
the colon becomes inflamed4–7. Dextran sulphate
sodium (DSS) is a polysaccharidewith varyingmolec-
ular weight ranging from 5 to 1400 kDa8. Due to
its toxicity to colonic epithelial cells, DSS promotes
human UC-like diseases, resulting in depressed mu-
cosal barrier function9. Weight loss, diarrhea, and
occult blood in the stool are common observations
in the DSS-treated rat model10. Many documents
have demonstrated the pharmaceutical importance of
phytochemicals in reducing UC symptoms, enhanc-
ing immune activity, and providing antioxidants that
reduce inflammation in animal models11–13. How-
ever, the data indicate a need for further studies to
elucidate the benefits and mechanisms of these com-
pounds.

Caffeic acid phenethyl ester (CAPE) is a major active
phenolic compound of some types of propolis14,15.
It has been shown to be protective against oxidative
stress-mediated tissue damage16–19. CAPE has been
associated with a variety of in vitro and in vivo phar-
macological effects20–23, and there have been reports
of its gastroprotective activity in animal models. In
addition, its anticancer properties were observed in
the skin ofmice treatedwith bee propolis and exposed
to 12-O-tetradecanoylphorbol-13-acetate24,25.
Our findings indicate that the presence of vanin-1 in
tissues of the epithelium influences the perception of
stress26 by innate immune cells as an inhibitor of in-
flammatory processes and the treatment of colitis27.
In addition, research indicates the upregulation of
miRNA 203 and AKT gene expression in certain in-
flammatory tissues and organs28–30. As a measure of
our interest research program in the treatment of in-
flammatory diseases31–36. In the present study, we
aimed to evaluate the therapeutic potential of CAPE
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in DSS-induced UC in rats.

METHODS
Chemicals
All chemicals were purchased from Sigma Aldrich,
Germany.
- Caffeic acid phenethyl ester (97%) powder: For-
mula [C17H16O4], molecular weight (284.31), CAS.
No. (104594-70-9).
- Dextran sulfate sodium (98%) powder: Formula
[(C6H7Na3O14S3)n], molecular weight (>500,000),
CAS. No. (9011-18-1).
- Sulfasalazine (99%) powder: Formula
(C18H14N4O5S), molecular weight (398.394),
CAS. No. (599-79-1).

Animals
Male albino rats weighing 150 ± 10 g each were do-
nated by the National Cancer Institute Animal House
at Cairo University in Giza, Egypt. They were kept
in plastic cages with stainless steel covers at a humid-
ity level of 55 — 60% and a temperature of 22 ◦C
in a light-controlled environment. The animals were
maintained for 2 weeks to adapt and were provided
regular feed and water at will.

Design of experiment
This experiment was designed to evaluate the gastro-
protective effect of CAPE in DSS-induced UC. Ac-
cording to the guidelines of the Faculty of Applied
Health Sciences Committee, the present studywas de-
sign. The treatment grouping is described in Table 1.

Calculation of disease activity index
In experimental colitis, the disease activity index
(DAI) was calculated according to the method out-
lined by Bang and Lichtenberger38.

Sample collection
On day 16, 1 day after the last dose, blood sam-
ples were collected in tubes containing heparin from
the retroorbital venous plexus of each animal. Hep-
arinized blood samples were divided into two parts:
the first part was used to estimate PLT count us-
ing a Sysmex KX-21N automated hematology ana-
lyzer (Sysmex Corp., Kobe, Japan)39, and the second
part was centrifuged at 1000 g for 20 min. Separated
plasma was used to estimate plasma levels of NF-κB
using an ELISA kit (MyBioSource Inc., San Diego,
CA,USA, 92195-3308), NOusing the calorimetrically
calibrated diagnostic kit, interleukin 6 (IL-6) using an
ELISA kit (Abcam plc, USA), and vitamin C (Vit. C)

using an ELISA kit (Novus kits, Novus Biologicals,
LLC, California, USA).
At the end of the experiment, the colon of each
animal was excised, washed with phosphate-buffer
saline (PBS), gently stretched, and the distance be-
tween the colocecal junction and the distal end of the
rectum was measured40. The distal sections of the
colons were then separated; one piece was used for
histopathological analysis, and the other piece was
kept frozen at 80 ◦C until biochemical analysis of
TBARS, GSH, SOD, andCAT41–44 using colorimetric
methods in the diagnostic kit. In addition, the IFN-γ
content was determined using an ELISA kit (Abcam
plc, USA).

Real-time PCR

Using the RNA-spinTM (QiaGen GmbH, Hilden,
Germany), total RNA from colon tissues was ex-
tracted45. As instructed by the manufacturer, cDNA
was used for qPCR using the SYBR Green PCR mas-
ter mix (iNtRON Biotechnology, Korea). The reverse
transcription kit was used to produce cDNA from 1 –
5 g total RNA (Applied Biosystems, Foster City, CA).
The sequences of the genes evaluated (vanin-1, AKT,
and miRNA-203) and the housekeeping primer used
in RT-PCR, β -actin (Primer Design Ltd, USA), are
shown in Table 2.

Histological examination

A sample of colon tissues was collected and fixed
in 10% neutral buffered formalin. It was then de-
hydrated in ascending graders of ethyl alcohol (50–
100%), cleared in xylene and embedded in melted
paraffinwax (MP 59), embedded in paraffin as blocks,
and 5–6-micron-thickness sections were cut using
a rotary microtome46. The paraffin sections were
stained and exanimated using a light microscope
(Olympus, Münster, Germany). A photomicrograph
of the colon tissue was taken at 400 x magnification.

Statistical analysis

Data are presented asmean± standard deviation (SD)
for six measurements for both spectrophotometric
measurements and ELISA. However, there are three
separate determinations for PCR analysis of gene ex-
pression. All data were analyzed using SPSS ver-
sion 20 software47. The one-way analysis of variance
(ANOVA) test was used to assess the hypotheses. Sta-
tistical significance was defined as P < 0.05.

RESULTS
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Table 1: Description of treatment groups

Group
NO.

Groups Treatment description

I Normal control Received 3 mL of distilled water, orally for 15 days.

II CAPE
(10 mg/kg.b.w.)

Received 10 mg / kg bw. CAPE, orally, daily for 15
days 36.

III Positive control
DSS, 5% in distilled water

Received DSS, 5% orally, for 15 days 37.

IV DSS + CAPE Received DSS + CAPE, orally, for 15 days

V DSS + Sulfasalazine (100 mg/kg b.w.) Received DSS + sulfasalazine (100 mg/kg b.w.), orally,
for 15 days 37.

Table 2: The primer sequences

Gene Sequences

Vanin-1 forward 5’-AACTGGATACCCTGTGATAACCC-’3

reverse 5’- GTCTCCCATGTTCGCCACAA-’3

AKT forward 5’-CCCTGCTCCTAGTCCACCA–’3

reverse 5’-TGTCTCTGTTTCAGTGGGCTC-’3

miRNA-203 forward 5’- GGGGTGAAATGTTTAGGAC-’3

reverse 5’- CAGTGCGTGTCGTGGAGT-’3

β -actin
(housekeeping)

forward 5’-TGACTGACTACCTCATGAAGATCC-’3

reverse 5’-TCTCCTTAATGTCACGCACGATT-’3

Figure 1: Effect of CAPE and sulfasalazine on disease activity index in DSS induced colitis groups of rats for
15 days. Data was expressed as mean± SEM (n = 6). The obtained values were significantly different at P≤ 0.05.
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Figure 2: Effect of CAPE and sulfasalazine on colon length in DSS treated rats. Data was expressed as mean
± SEM (n = 6).

Figure 3: Effect of CAPE and sulfasalazine on colon Vanin-1, AKT and miRNA-203 gene expression in DSS-
treated rats. Representative bar diagram of three independent experiments is presented. Data followed by the
same letter are not significantly different at P≤ 0.05.

5316



Biomedical Research and Therapy 2022, 9(9):5313-5325

Table 3: Effect of CAPE and sulfasalazine on the body weight every 5 days of DSS treated rats

No. Groups Number of days/
Body weight of rats(g)

1 5 10 15

(I) Normal control
3 mL of distilled water,
orally

160.42± 3.72bA 163.72± 5.08aA 169.79± 7.69 174.63± 3.24cC

(II) CAPE
(10 mg/kg.b.w.)

162.29± 8.53A 166.63± 8.23AB 170.58± 10.54 C 175.69± 8.06cD

(III) Positive control
DSS, 5% in distilled wa-
ter

158.15± 10.78 aA 160.50± 9.29aA 161.57± 10.73a 161.99± 4.95 aB

(IV) DSS + CAPE 160.43± 10.45 A 163.01± 7.72aA 168.33± 5.28ab 172.37± 9.62 C

(V) DSS + Sulfasalazine
(100 mg/kg b.w.)

159.73± 4.47aA 162.07± 6.14aAB 165.70± 8.00aBC 167.73± 6.03aC

Body weight of rats during the 15 days period. Data shown are mean± standard deviation of number of observations within each treatment.
Data followed by the same letter are not significantly different at P≤ 0.05. Small letters are used for comparison between the means within the
column. Capital letters are used to compare means within the row.

Table 4: Effect of CAPE and sulfasalazine on blood PLT count as well as plasma NO, NF-kβ and Vit.C in
DSS-treated rats

Groups Treatment Description PLT
(103/mL)

NO
(ng/mL)

NF-kβ
(ng/mL)

Vit. C
(µmol/L)

I Normal control
3 mL of distilled water,
orally

261.27± 23.18 c 10.79± 1.87 a 0.81± 0.10 a 83.13± 7.96 d

II CAPE
(10 mg/kg.b.w.)

265.33± 18.62 c 9.67± 0.54 a 0.93± 0.16 a 82.04± 5.46 d

III Positive control
DSS, 5% in distilled wa-
ter

209.28± 12.08 a 36.13± 4.39 d 3.51± 0.37 d 59.76± 6.46 a

IV DSS + CAPE 265.00± 26.38c 14.52± 3.30 b 1.36± 0.22 b 77.13± 6.14 c

V DSS + Sulfasalazine (100
mg/kg b.w.)

217.58± 14.00 B 21.94± 2.56 c 2.40± 0.31 c 65.98± 5.25 b

Data shown are mean ± standard deviation of number of observations within each treatment. Data followed by the same letter are not
significantly different at P≤ 0.05.

Effect of CAPE and sulfasalazine on the
body weight of DSS-treated rats

Table 3 shows non-significant changes in bodyweight
of CAPE (10 mg/kg.b.w.)-treated rats (group II) as
compared with normal control rats (group I). Addi-
tionally, there was a significant depletion of 7.2% body
weight in rats treated with DSS (5%) (group III) as
compared with the control group after 15 days of oral
administration (P< 0.05).
In contrast, administration of CAPE (10 mg/kg.b.w.)
to DSS rats produced a significant increase in body
weight by 60.40 % compared with the DSS-treated

control group (P < 0.05). Administration of sul-
fasalazine (100 mg/kg b.w.) produced a non-
significant increase in bodyweight inDSS-treated rats
by 3.54 % when compared to the DSS-treated control
group of rats.

Effect of CAPE and sulfasalazine on disease
activity index in rats with DSS-induced coli-
tis

The results in Figure 1 indicate a non-significant
change in the DAI of CAPE-treated rats (group II)
as compared to normal control rats (group I). How-
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Table 5: Effect of CAPE and sulfasalazine on colon GSH, GPx, CAT and SOD in DSS-treated rats

Groups Treatment Description GSH (nmole/mg
protein)

GPx
(U/mg protein)

CAT (U/mg
protein)

SOD (U/mg
protein)

I Normal control
3 mL of distilled water,
orally

29.89± 2.79d 25.97± 2.85d 32.67± 2.75d 97.44± 11.13 d

II CAPE
(10 mg/kg.b.w.)

30.71± 3.21d 22.39± 3.77cd 35.48± 3.62d 96.17± 9.49 d

III Positive control
DSS, 5% in distilled wa-
ter

13.64± 2.65a 8.98± 0.84a 13.82± 2.27a 53.09± 6.99 a

IV DSS + CAPE 23.04± 3.20 c 19.28± 3.21c 27.50± 2.23 c 79.25± 6.48 c

V DSS + Sulfasalazine (100
mg/kg b.w.)

17.45± 3.35b 13.78± 2.65 21.60± 2.44b 61.19± 5.82b

Data shown are mean ± standard deviation of number of observations within each treatment. Data followed by the same letter are not
significantly different at P≤ 0.05.

Table 6: Effect of CAPE and sulfasalazine on colon TBARs, IL-6 and INF-γ in DSS-treated rats

Groups Treatment Description TBARs
(nmol/mg protein)

IL-6
(pg/mg protein)

INF-γ (pg/mg
protein)

I Normal control
3 mL of distilled water, orally

70.34± 5.72 a 25.71± 4.49 a 0.41± 0.06 a

II CAPE
(10 mg/kg.b.w.)

68.83± 5.81 a 27.85± 2.58 a 0.38± 0.05 a

III Positive control
DSS, 5% in distilled water

142.71± 8.73 d 46.59± 4.69 d 1.46± 0.13 d

IV DSS + CAPE 93.06± 8.06 b 33.08± 4.13 b 0.64± 0.08 b

V DSS + Sulfasalazine (100 mg/kg
b.w.)

114.65± 11.44 c 40.17± 4.25 c 1.14± 0.17 c

Data shown are mean ± standard deviation of number of observations within each treatment. Data followed by the same letter are not
significantly different at P≤ 0.05

ever, the present data show a significant change in
the DAI score after DSS treatment compared with the
DAI of the control group. Treatment with CAPE (10
mg/kg.b.w.) and sulfasalazine produced significantly
improvedDAI scores in DSS-treated rats as compared
with the group treated with DSS alone (P < 0.05).

Effect of CAPE and sulfasalazine on colon
length in DSS-treated rats

The colon length of CAPE-treated normal rats (group
II) was non-significantly changed when compared
with the normal rats (Figure 2). Compared with the
normal group of rats, treatment with DSS (5%) re-
sulted in a significant reduction in colon length by
24.7 %. Furthermore, administration of CAPE to the
DSS-treated group produced a significant increase in
colon length by 25.38 % when compared with the

DSS-treated control group (P < 0.05). However, the
administration of sulfasalazine to DSS-treated rats
produced a significant increase in colon length by
12.78% compared with the DSS-treated control group
(P < 0.05).

Effect of CAPE and sulfasalazine on blood
PLT count and plasma NO, NF-kβ , and vita-
min C in DSS-treated rats.
Administration of CAPE to normal rats produced
non-significant changes in plasma PLT, NO, NF-kβ ,
andVit. Cwhen comparedwith normal rats (Table 4).
Compared with normal rats, DSS treatment (5%) re-
sulted in a significant reduction in blood PLT count
and plasma Vit. C levels by 19.89% and 28.11%, re-
spectively, and a significant increase in plasma NO
and NF-kβ by 234.84% and 333.30%, respectively (P
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Figure 4: Effect of CAPE and sulfasalazine on histological changes of colon tissues of different groups. (a):
Group I, (b): Group II: Was administrate CAPE (10 mg/kg.b.w.), (c): Group III: DSS (50%), (d): Group IV: Was ad-
ministrate DSS (5%) + CAPE (10 mg/kg.b.w.), (e): Group V: Was administrate DSS (5%) + Sulfasalazine (100 mg/kg
b.w.).

< 0.05).
Additionally, compared with the DSS-treated control
group, CAPE treatment resulted in significantly ele-
vated PLT count and plasma Vit. C levels by 26.62%
and 29.06%, respectively, and a significant decrease
in plasma NO and NF-kβ by 59.81% and 61.25%, re-
spectively (P < 0.05).
Sulfasalazine administration significantly increased
blood PLT and plasma Vit. C levels by 3.96% and
10.4%, respectively, and produced a significant in-
crease in plasma NO and NF-kβ by 39.27% and
31.62%, respectively, when compared with the DSS-
treated control group (P < 0.05) (Table 4).

Effect of CAPE and sulfasalazine on colonic
GSH, GPx, CAT, and SOD in DSS-treated rats

Administration of CAPE to normal rats produced
nonsignificant changes in colon GSH, GPx, CAT,
and SOD when compared with normal rats. How-
ever, compared with normal rats, DSS (5%) treat-
ment resulted in a significant reduction in colonGSH,
GPx, CAT, and SOD of 54.36%, 55.42%, 57.69%, and
45.51%, respectively. Furthermore, administration of
CAPE to rats treated with DSS produced a signifi-
cant increase in colon GSH, GPx, CAT, and SOD by
68.91%, 114.64%, 98.9%, and 49.27%, respectively,
when compared with rats treated with DSS alone (P
< 0.05) (Table 5).
Treatment of rats with sulfasalazine (100 mg/kg b.w.)
produced a significant increase in colon GSH, GPx,

CAT, and SOD by 27.93%, 53.45%, 56.29%, and
15.25%, respectively, compared with the DSS-treated
control group (P < 0.05).

Effect of CAPE and sulfasalazine on colonic
thiobarbituric acid-reactive substances
(TBARs), interleukin 6 (IL-6), and interferon
γ (INF-γ) in DSS-treated rats

Table 6 shows the effects of CAPE and sulfasalazine
individually on colon TBARs, IL-6, and INF-γ in nor-
mal andDSS-treated rats. Oral administration of nor-
mal rats with CAPE showed nonsignificant changes
in colonic TBAR, IL-6, and INF-γ when compared to
normal rats. In contrast, oral administration of DSS
(5%) resulted in a significant increase in colon levels
of TBAR, IL-6, and INF-γ by 102.88%, 81.21%, and
256.09%, respectively (P < 0.05).

Compared with the DSS-treated control group, CAPE
administration in the X group resulted in a signif-
icant reduction in colonic TBAR, IL-6, and INF-γ
by 35.22%, 28.99%, and 56.10%, respectively. Fur-
thermore, administration of sulfasalazine (100 mg/kg
b.w.) significantly decreased colonic TBARs, IL-6,
and INF-γ by 19.66%, 13.77% and 21.91%, respec-
tively, when compared with the DSS-treated control
group (P < 0.05).
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Effect of CAPE and sulfasalazine on colonic
vanin-1, AKT, and miRNA-203 gene expres-
sion in DSS-treated rats
Figure 3 shows the individual effects of CAPE
and sulfasalazine on the expression of the vnin-1,
AKT and miRNA-203 genes in normal rats treated
with DSS. Treatment of normal rats with CAPE (10
mg/kg.b.w.) produced a nonsignificant change in
colon vanin-1, AKT, and miRNA-203 gene expres-
sion.
When compared with the normal control group, oral
administration of DSS (5%) resulted in a signifi-
cant increase in colon levels of vanin-1, AKT, and
miRNA-203 gene expression by 416.66%, 511.65%,
and 761.4%, respectively (P < 0.05).
However, compared with the DSS-treated control
group, CAPE treatment resulted in a significant re-
duction in colonic expression of vanin-1, AKT, and
miRNA-203 gene by 55.35%, 52.53%, and 72.41%, re-
spectively. Furthermore, the administration of sul-
fasalazine to rats treated with DSS significantly de-
creased the expression of vanin-1, AKT, and miRNA-
203 genes in the colon by 74.95%, 73.65%, and
55.17%, respectively, compared with the control
group (P < 0.05).

Effect of CAPE and sulfasalazine on histo-
logical alterations in colon tissues
Figure 4(a-e) shows the individual effects of CAPE
and sulfasalazine on colon histopathology of normal
and DSS-treated rats.
In Figure 4a&b, histopathological examination of
normal and CAPE-treated groups (I&II) revealed in-
tact surface epithelium (black arrows) and regular
glands with adequate mucin production (blue ar-
rows). The lamina propria did not show inflammatory
cell aggregates.
In Figure 4c, colon histopathological examination of
DSS-treated rats revealed surface erosions and ulcer-
ations (black arrows). Many glands were replaced by
inflammation, with mucin depletion (blue arrows).
Many lymphoid aggregates (stars) are observed.
Furthermore, oral administration of CAPE to rats
treated with DSS produced an intact surface epithe-
lium (black arrows); mucin depletion was partially
corrected (blue arrows), and few focal lymphoid ag-
gregates were still observed (stars) comparedwith rats
treated with DSS.
However, histological examination of rats treatedwith
sulfasalazine/DSS showed a partly eroded surface ep-
ithelium (black arrows) with glandular mucin deple-
tion inmany glands (blue arrows); large lymphoid ag-
gregates were still seen (stars).

DISCUSSION
UC is believed to be a TH2-mediated inflammatory
disease, while Crohn’s disease is thought to be a TH1-
mediated inflammatory disease48. In animal models,
the inflammatory imitate UC mediated by TH1 and
TH 2 was elevated49.
Numerous studies have shown that polyphenols and
flavonoids can be used therapeutically to prevent in-
vasion and metastasis of colorectal cancer cells50,51.
In that study, we suggested that CAPE inhibited the
expression of inflammatory mediators and biomark-
ers of oxidative stress. A recent study reported a pre-
viously unknown mechanism in which CAPE could
inhibit invasion and migration by modulating the
MMP-2 and MMP-9 signaling pathways52.

Effect of CAPE and sulfasalazine on the
body weight of DSS-treated rats
In UC animal models, the degree of inflammation is
measured by determining the daily change in body
weight of the animals during each experiment and
measuring the length of the resected colon53,54. Al-
though weight loss alone is a poor predictor of well-
being55, it is still accepted that weight loss >20% is a
criterion for euthanasia and an indication that the ex-
perimental design may be too aggressive55. The three
primary symptoms of IBD in DSS-induced rats with
colitis were considerable weight loss, bloody diarrhea,
and shortening of the colon56,57. In addition, in rats
treated with DSS, colon shortening may be related to
thickening due to edema and infiltration of inflamma-
tory cells into the lamina propria and submucosa58.

Effect of CAPE and sulfasalazine on colon
DAI score and length in DSS treated rats
In our investigation, treatment of rats with DSS for 15
days caused acute colitis with an elevated DAI score
and a decreased colon weight/length ratio. A sub-
stantial correlation between the DAI score and in-
flammation in DSS-induced acute and chronic colitis
has been reported by Bullich et al.57 Following treat-
ment with CAPE, colon length, DAI score, and body
weight improved. Many researchers have reported the
antioxidant, anti-inflammatory, anticancer, prebiotic,
immunomodulatory, and gastroprotective properties
of polyphenols and their metabolites59,60. CAPE
treatment led to a marked reduction in the inflam-
matory infiltrate in both the lamina propria and the
submucosa and protected against changes in colon
length in a dose-dependent manner. Espíndola et
al.52 showed that CAPE inhibits the release of inflam-
matory cytokines from human hepatocellular carci-
noma cells.
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Effect of CAPE and sulfasalazine on blood
PLT count and plasmaNO, NF-kβ , and Vit. C
in DSS-treated rats
In the present study, we observed a depletion of blood
PLT levels in DSS-treated rats. Our results were in
line with those reported by Zamora et al.61 andHonjo
et al.,62 who showed that UC patients had the low-
est levels of PLT and Vita. C due to the production
of inflammatory mediators NO and NF-kβ 63 and the
depletion of endogenous antioxidant biomarkers (i.e.,
Vit. C), which reduced the binding of PLTs to mono-
cytes through the membrane, favoring an inflamma-
tory response in UC patients with onset flare. The
PLT changes in DSS-treated rats were restored upon
treatment with CAPE and sulfasalazine. CAPE exhib-
ited potent antioxidant activity by restoring the levels
of PLT, NO, NF-kβ , and Vit. C. Our results are in
line with the results of Gupta et al.64 and Nakashima
et al.65, who noticed that phenolics significantly re-
duced levels of inflammatory mediators, thereby sup-
pressing their inflammatory response in UC. Our re-
sults suggest that CAPE treatment decreases the ex-
pression of NO and NF-kβ , increases the production
of Vit. C, and ameliorates intestinal mucosal barrier
dysfunction in UC.

Effect of CAPE and sulfasalazine on colon
GSH, GPx, CAT, and SOD in DSS-treated rats

In the present study, we noticed depletion of colon
GSH, GPx, CAT, and SOD in DSS-treated rats. Our
results were in line with the results reported by
Zieliska et al.66, who observed a significant decrease
in GSH, GPx, CAT, and SOD levels in patients with
IBD when compared with controls. Our results in-
dicate that the administration of CAPE significantly
improves macroscopic damage, colon length, in-
creases the activity of GPx, CAT, and SOD, depresses
TBARs and NO levels, and increases GSH levels in
the colon tissues of experimental colitis. Many arti-
cles have shown that the administration of flavonoids
and polyphenols modulates the levels of antioxidant
biomarkers and inflammatory mediators67,68.

Effect of CAPE and sulfasalazine on colonic
TBARs, IL-6, and INF-γ in DSS-treated rats
Our study indicated the elevation of TBAR, IL-6, and
INF-γ levels in the colon tissues of experimental coli-
tis. Yan et al.69 reported elevation of TBAR, IL-6, and
INF-γ levels in colon tissue. These markers increase
the inflammatory response of IL-6, INF-γ , NF-κB,
destructive enzymes, and TBARs that cause damage

to colon tissue70. In our study, CAPE significantly
ameliorated tissue damage, IL-6, INF-γ , NF-κB, and
TBARs in rats treated with DSS. Furthermore, our re-
sults indicate that DSS upregulates colon vanin-1 gene
expression in DSS-treated rats. Our results were con-
firmed by the results of Gensollen et al.71, who re-
ported vanin-1 upregulation in the intestinal tract in
DSS-induced colitis. Our study suggests that eleva-
tion of vanin-1 gene expression in DSS-treated rats is
a direct target for NF-κB in the colon, and this could
be related to susceptibility to UC.

Effect of CAPE and sulfasalazine on colon
vanin-1, AKT, and miRNA-203 gene expres-
sion in DSS-treated rats
Colon Akt gene expression was significantly upreg-
ulated in DSS-treated in rats. Our results were in
line with a study by Li et al.72, who reported up-
regulation of Akt in DSS-treated rats. Furthermore,
the Akt signaling pathway was significantly inhib-
ited by CAPE administration, leading to the recovery
of intestinal microbiota diversity. Our results indi-
cated the downregulation of colon Akt gene expres-
sion by CAPE administration due to its inhibitory ac-
tivity against colon NF-κB production in DSS-treated
rats. Additionally, our study revealed upregulation
of miRNA-203 gene expression in DSS-treated rats.
Tian et al.73 studied the effect of inflammation on
miRNAs and found that the mucosa of UC patients
that was infiltrated with inflammatory cells had ele-
vated miRNA levels, while the levels were reduced to
non-inflammatory levels in patients under remission.
Further investigation revealed the role of miRNA
in suppressing inflammatory mediator genes within
colonic epithelial cells, all implicated in IBD74. How-
ever, miR-203 downregulation was observed in DSS-
treated rats after oral CAPE administration. An as-
sociation between vanin-1 and AKT suggests that
overexpressed vanin-1 decreases the extent of AKT74
phosphorylation. Furthermore, miR-203 can activate
the Akt signaling pathway through IL-8 in the regula-
tion of radioresistance in nasopharyngeal carcinoma
cells75. Moreover, the AKT signaling pathway has
been shown to be effective in preventing ventilator-
induced lung injury 76. Our findings suggest regula-
tion of miR-203 gene expression due to inhibition of
IL-6, INF-γ , and NF-κB production and vanin-1 and
Akt gene expression by CAPE administration.
Our results support and indicate downregulation of
colon vanin-1 gene expression in DSS-treated rats af-
ter CAPE administration for 15 days due to inhibition
of colon NF-κB levels.
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Effect of CAPE and sulfasalazine on histo-
logical changes in colon tissues
In rats treated with DSS, histological analysis of
colon tissue indicated altered mucosal architecture
and inflammation. Our observations of microscopic
changes were consistent with a large body of research
on DSS-induced UCmodels in rats77. CAPE inhibits
changes in colon architecture and length and signif-
icantly reduces inflammatory infiltration in both the
lamina propria and submucosa.
CAPE treatment significantly decreased colon
injury and contributed to the anti-inflammatory
and anti-apoptotic effects. Furthermore, the anti-
inflammatory and anti-apoptotic activities of CAPE
and its effects on vanin-1, AKT, and miRNA-203
gene expression in IBD rats has not been previously
documented, and this study may be the first of its
kind.

CONCLUSIONS
The current study used biochemical and molecular
analysis to show that IBD is associated with increased
levels of oxidative stress and apoptosis. The data
show that IL-6, INF-α , and NF-kβ are actively in-
volved in gut mucosal inflammation in DSS-treated
rats. Furthermore, we found significant improvement
in miRNA-203, vanin-1, and Akt gene expression in
DSS-treated rats. The potential benefits of CAPE
on colon lipid peroxidation, inflammatory mediators,
and antioxidant systems led researchers to hypothe-
size that it would be a viable choice for treating IBD.

ABBREVIATIONS
AKT: Protein kinase B, CAPE: caffeic acid phenethyl
ester,CAT: catalase,DAI: disease activity index,DSS:
dextran sulfate sodium,GPx: glutathione peroxidase,
GSH: reduced glutathione, IL-6: interleukine-6, INF-
γ : interferon-γ , IBD: inflammatory bowel disease,
NO: nitric oxide, NF-kβ : nuclear factor kappa, PLT:
platelet count, SOD: superoxide dismutase, TBARs:
thiobarbituric acid reactive substances, Vit. C: vita-
min C.
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