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ABSTRACT
Introduction: Neuropathic pain is one of the main problems that succeeds a lesion or disease
of the somatosensory system. In this study, the effect of exercise on oxidative stress after neu-
ropathic pain due to sciatic nerve injury in male and female rats was evaluated. Methods: For
this study, 70 adult wistar rats (35 males and 35 females) weighing 180 – 220 grams were divided
into single-sex intact, sham, exercised sham, neuropathy, and exercised neuropathy groups, with
7 rats in each group. To induce neuropathy, chronic constriction injury (CCI) of the sciatic nerve
was used. The exercise program included 4 weeks of swimming and medium-intensity. Von-Frey
filament and plantar test devices were used to evaluate neuropathic pain. Malondialdehyde (MDA)
and the ferric-reducing ability of plasma (FRAP) were determined using a spectrophotometer. Re-
sults: Our results showed that nerve damage significantly reduced the response threshold to me-
chanical and thermal stimulation in both sexes, and continuous exercise significantly improved
neuropathic pain in both sexes. In addition, nerve injury did not significantly generate oxidative
stress in male or female rats. Meanwhile, exercise significantly reduced MDA levels and increased
FRAP levels in neuropathic male rats but it did not affect oxidative stress parameters in female neu-
ropathic rats. Conclusions: Long-term exercise reduces neuropathic pain. Swimming exercise
significantly modified MDA and FRAP levels in neuropathic male rats but not in female rats. Sex
hormones appear to play different roles in the oxidative stress response.
Key words: Exercise, Neuropathic pain, Oxidative stress, Rat

INTRODUCTION
Neuropathic pain is a chronic condition that devel-
ops after a lesion or disease of the somatosensory sys-
tem1. Based onwhether the lesion is in the peripheral
or central nervous system, neuropathic pain is cate-
gorized as peripheral or central. Neuropathic pain is
characterized by sensory disturbances, including allo-
dynia and hyperalgesia, which can be spontaneous or
evoked2. Various mechanisms driving neuropathic
pain have been suggested; however, oxidative stress
is also prominently involved in the pathogenesis of
neuropathic pain3. Despite various pharmacological
treatments, neuropathic pain remains a major prob-
lem in medicine. The extent of the involved mecha-
nisms and change over time present challenges in the
treatment of neuropathic pain4. Given these difficul-
ties, using non-pharmacological methods as adjunct
therapies could be useful.
Of the non-pharmacological approaches to managing
neuropathic pain, exercise is of particular importance.
The beneficial effects of exercise to treat disease and
support health have been emphasized. Among the
mechanisms that have been suggested to explain the
positive effects of exercise, oxidative stress suppres-

sion is prominent5. Oxidative stress describes the in-
ability of the antioxidant defense system to scavenge
reactive oxygen species (ROS)6.
Submaximal exercise reportedly reduces ROS pro-
duction and improves antioxidant capacity 7. Regular
physical activity prevents oxidative-stress-induced in-
juries by stimulating endogenous antioxidant capac-
ity 5. The oxidative stress response is affected by sex,
age, and lifestyle8.
The antioxidant system’s activity seems to be higher in
females than inmales9. Women suffer from oxidative
stress injuries less than men10.
As oxidative stress is a potential contributor to various
diseases, studying the effect of oxidative stress on any
problem in either sex is helpful to clarify the available
treatment pathways.
Some studies have shown that the response to oxida-
tive stress differs by sex in some disorders; for exam-
ple, female organisms are more resistant than males
against the ischemic heart and ischemic brain disease
that are associated with oxidative stress11.
Previously, we showed that swimming exercise signif-
icantly improved glutathione peroxidase levels in fe-
male rats with trigeminal neuropathic pain, but not in
male rats12.
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Little information about sex differences affecting the
effect of exercise on the response to oxidative stress
under illness is available. A review of past studies
showed no reports on the difference in the oxida-
tive stress response in male and female rats with sci-
atic neuropathy. As most research is performed on
male animals of different ages and sex differences are
less thoroughly studied, the potential effect of sex is
important in designing research and treatment pro-
grams. Therefore, this study sought to investigate
whether oxidative stress is involved in neuropathic
pain, if the effect of aerobic exercise on neuropathic
pain was mediated through the suppression of oxida-
tive stress, andwhether the response in both sexes was
the same.

MATERIALS ANDMETHODS

Animals

In this study, 70 adult wistar rats (35 male rats and 35
female rats) weighing 180 - 220 grams were used. The
rats had free access to food andwater andwere housed
at standard temperature (22 ± 2◦C) and humidity
(40 — 50%), and a 12 h light–dark cycle. The male
and female rats were each divided into five groups:
intact, sham, exercised sham, neuropathy, and ex-
ercised neuropathy, with seven rats in each group.
Because of their inability to perform the tests, three
male rats and four female rats were excluded from the
study.
All experimental protocols of this study were
approved by the research committees of
the Semnan University of Medical Sciences
(IR.SEMUMS.REC.1399.298) and were conducted
according to the national health institute’s guidelines
for the use and care of laboratory animals. All of the
behavioral experiments were performed between 9
and 12 a.m to minimize diurnal variations.

Surgery to induce neuropathic pain

Neuropathic pain was induced via chronic constric-
tion injury (CCI) as described by Bennett and Xie13.
Each rat was anesthetized with a mixture of ketamine
(80 mg/kg) and xylazine (10 mg/kg); then, the right
thigh was shaved and a 2-cm incision was made at
the sciatic nerve. The exposed sciatic nerve was lig-
ated with four moveable 4/0 catgut chromic sutures.
The ligations were placed 1 mm apart. Then, the inci-
sion was closed with 4/0 silk suture. Rats in the sham
group underwent the same surgery without nerve lig-
ation. The rats were placed in individual cages until
they reached full consciousness and recovered.

Exercise protocol
Moderate-intensity swimming exercise was per-
formed as described by Jose14. Animals were
exercised for 4 weeks (5 days a week for 20 minutes
daily). During swimming, a weight equal to 3% of the
animal’s body weight was hung on its tail. A plastic
cylinder (60 cm tall and 30 cm in diameter) filled with
tap water (36 ± 1◦ C) was used. To accommodate
the exercise program, the animals swam for 5, 10,
and 20 minutes a day during the week before the
experimental treatment began, and the animals that
were unable to complete the program were excluded
from the study (three male rats and four female rats).

Evaluation of pain-like behavior
Mechanical allodynia and thermal hyperalgesia (paw
withdrawal threshold in response to mechanical and
thermal stimulation), were evaluated via Von-Frey fil-
ament and plantar test devices, respectively, on the
30th day after surgery. To adapt to the experimental
conditions, the animals were transferred to the lab 30
minutes before the experiments were performed.

Mechanical allodynia
Mechanical allodynia was determined with Von-
Frey filaments according to the method described
by Ren15. A Von-Frey filament is a polyethylene
hair that, according to its diameter, exerts a certain
amount of force on the surface to which it is ap-
plied. Von-Frey filaments are calibrated by diame-
ter; a small-diameter filament is usually used initially.
Stimulation was applied to the dorsal surface of the
injured paw at the junction between the second and
third toes. Each filament was applied five times at in-
tervals of 10 seconds. If the paw withdrawal response
was observed at three consecutive stimulations, that
force was considered the response threshold; other-
wise, the stimulation would be repeated with a larger-
diameter filament. The cutoff force was 60 grams.

Thermal hyperalgesia
Thermal hyperalgesia (paw withdrawal latency to
thermal stimulation) was detected by the method de-
scribed by Bennett and Xie13 using the plantar test
device. After the animal was placed in the device,
the source of the infrared beam was focused on the
plantar surface of the injured paw, irradiation began,
and the paw withdrawal latency to irradiation was
recorded automatically. The infrared beam was irra-
diated three times at 5-minute intervals. The average
of three latency times was considered the paw with-
drawal response. The cutoff time of response was 40
seconds.
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Biochemical experiments
Biochemical tests included malondialdehyde (MDA)
and ferric-reducing ability of plasma (FRAP) assays in
blood serum. A spectrophotometer was used to read
the wavelength results.

Blood sampling
To prepare the serum, blood samples were taken from
rats’ hearts and centrifuged for 10 minutes at 2,000
RPM. The prepared serum was kept at -80◦ C until
the biochemical tests were performed.

MDAmeasurement
Malondialdehyde was quantified via the method de-
scribed by Mihara16 using thiobarbituric acid. MDA
is one of the end products of lipid peroxidation and
is a marker for oxidative stress. The reaction of MDA
with thiobarbituric acid was evaluated spectrophoto-
metrically, with the maximum absorption at 535 nm.

FRAPmeasurement
FRAP was measured via the method described by
Benzei17. The test was used to determine the total
antioxidant capacity of the plasma. This method is
based on the ability of the sample to convert Fe3+ ions
to Fe2+ ions. The output is a blue solution, which
was measured spectrophotometrically, with the max-
imum light absorption at 593 nm.

Statistical analyses
One-way analyses of variance and two-way analyses
of variance were used to analyze the data. Tukey’s and
Bonferroni posthoc tests were used on these results,
respectively. The data were analyzed with Graph-
Pad Prism version 8.0 software (GraphPad, SanDiego,
CA, USA). All data are presented as mean± SEM and
p < 0.05 was considered statistically significant. The
sample size in behavioral tests was 6–7 rats per group
and 4–5 rats per group for biochemical experiments.
Experiments were performed according to the follow-
ing timeline.

RESULTS
In this study, we evaluated the effect of swimming ex-
ercise on oxidative stress following neuropathic pain
induced via CCI in male and female rats. The results
are presented as behavioral and biochemical sections.

Behavioral results

Effect of swimming exercise on mechanical
allodynia induced via CCI inmale and female
rats
The paw withdrawal response to mechanical stimula-
tion significantly increased (p < 0.01) in male neuro-
pathic rats compared to the sham group (Figure 1A).
Further, CCI increased (p < 0.05) the paw withdrawal
response to mechanical stimulation in female neuro-
pathic rats compared to the sham group (Figure 1
B). Four weeks of swimming exercise significantly (p
< 0.05) increased the paw withdrawal threshold (de-
creasedwithdrawal response) inmale and female neu-
ropathic rats (Figure 1A,B). Furthermore, our results
do not show a significant difference betweenmale and
female rats’ paw withdrawal threshold in response to
mechanical stimulation (Figure 1C).

Effect of swimming exercise on thermal hy-
peralgesia induced via CCI in male and fe-
male rats
Paw withdrawal latency to thermal stimulation sig-
nificantly decreased (p < 0.01) in male neuropathic
rats compared to the sham group (Figure 2A). CCI
also decreased (p < 0.05) paw withdrawal latency to
thermal stimulation compared to the sham group in
female neuropathic rats (Figure 2 B). Four weeks of
swimming exercise significantly (p < 0.05) increased
paw withdrawal latency (decreased withdrawal re-
sponse) in exercised neuropathic pain male and fe-
male rats (Figure 2A, B). However, we found that fe-
male rats’ paw withdrawal latency in response to ther-
mal stimulation was significantly lower than that of
male rats (Figure 2 C), indicating that thermal hyper-
algesia in female neuropathic rats ismore intense than
in male neuropathic rats.

Biochemical Results

MDAassay
In this study, MDA level was assayed in blood serum.
Our data showed that the MDA levels in male and
female neuropathic rats were not significantly differ-
ent from those of the sham groups (Figure 3A, B), al-
though they did increase inmale neuropathic rats. On
the other hand, exercise significantly (p < 0.01) de-
creased the MDA level in male neuropathic rats com-
pared to the neuropathy group (Figure 3 A). A com-
parison of male and female rats’ MDA levels showed
that exercise led to a significant difference between
them; theMDA level was significantly (p < 0.05) lower
in exercisedmale neuropathic rats than in female ones
(Figure 3 C).
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Figure 1: The effect of exercise onmechanical allodynia induced by CCI in male rats (A) and female rats (B).
Sciatic nerve injuryprominently reducedpawwithdrawal threshold followingmechanical stimulationandexercise
significantly reversed it toward sham group in both sexes (A, B). Paw withdrawal threshold in neuropathic male
rats was the same as female rats (C). Data were presented asMean± S.E.M. n = 6-7. Abbreviations: Exe: exercise,
CCI: chronic constriction injury. *P < 0.05, **P < 0.01

Figure 2: The effect of exercise on thermal hyperalgesia induced by CCI inmale rats (A) and female rats (B).
Sciatic nerve injury prominently reduced pawwithdrawal latency to thermal stimulation and exercise significantly
reversed it toward sham group in both sexes (A, B). Paw withdrawal threshold in response to thermal stimulation
in all experimental groupswas significantly lower in female rats than inmale rats (C). Datawere presented asMean
± S.E.M. n = 6-7. Abbreviations: Exe: exercise, CCI: chronic constriction injury. *P < 0.05, **P < 0.01, ***P < 0.001

FRAP assay

FRAP as an index of the total antioxidant capacity of
blood plasma was measured in the serum. We ob-
served that the FRAP level was not significantly dif-
ferent inmale neuropathic rats compared to sham rats
(Figure 4A), and exercise significantly (p < 0.05) in-
creased FRAP toward the level of the sham rats. How-
ever, the FRAP levels in female rats were not signifi-
cantly different between groups (Figure 4 B). A com-
parison of FRAP levels between male and female rats
showed no significant difference (Figure 4 C).

DISCUSSION
In this study, we showed that swimming exercise im-
proves neuropathic pain in both sexes and operates as

an antioxidant in male rats.
We showed that CCI decreased the paw withdrawal
threshold and paw withdrawal latency in both sexes
compared to the respective sham groups. Consistent
with our results, Cardenas et al. reported in 2021 that
cuff compression injury to the sciatic nerve led to me-
chanical allodynia and thermal hyperalgesia in male
and female mice18. Further, Dominguez et al. re-
ported that sciatic injury led to mechanical allodynia
and thermal hyperalgesia in rats of both sexes19.
Most of the available information is the result of re-
search on male animals, and sex and gender dif-
ferences are less frequently considered20. Various
physiological differences have been identified be-
tween male and female animals, including nervous
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Figure3: Theeffect of exercise on theMDA level inmale rats (A) and female rats (B). MDA level did not change
following sciatic nerve injury compared to sham group in both sexes (A, B). However, exercise significantly re-
duced MDA level against that in CCI male rats (A). There was significant difference between exercised CCI male
rats compared to exercised CCI female rats (C). Data were presented as Mean ± S.E.M. n = 4-5. Abbreviations:
Exe: exercise, CCI: chronic constriction injury. *P < 0.05, **P < 0.01, ***P < 0.001

Figure 4: The effect of exercise on the FRAP level in male rats (A) and female rats (B). Exercise significantly
increased FRAP level against that in CCI male rats (A) only. There was no significant difference between exercised
cci male rats and exercised CCI female rats (C). Data were presented asMean± S.E.M. n = 4-7. Abbreviations: Exe:
exercise, CCI: chronic constriction injury. *P < 0.05

responses, cardiovascular responses, respiratory re-
sponses, and hormones21. In addition, sex and gen-
der are known to play a role in the pathology of
chronic pain22. In this study, we observed that
thermal hyperalgesia following CCI was significantly
greater in female rats than in males. Similarly,
LaCroix-Fralish et al. showed that when mechani-
cal allodynia and thermal hyperalgesia are measured,
female rats are more sensitive than ovariectomized
rats and male rats23. Further, Meyer et al. reported
that females are more sensitive than males to ther-
mal stimulation after polyneuropathy 24. Boullon et
al. showed that the response threshold to skin irri-
tation caused by acetone in female neuropathic rats

is significantly lower than that of male neuropathic
rats25. Biological factors play an important role in the
different responses of the two sexes to painful stimuli.
Estrogen receptors occur in different central and pe-
ripheral regions associated with pain26. Estrogen also
increases pain sensitivity by stimulating the expres-
sion of NMDAR1 (N-methyl-D-aspartate acid recep-
tor in the spinal dorsal horn ganglion, reducing the
response threshold to noxious stimuli in females27.
Moreover, brain imaging studies have shown that the
activity of pain-inhibitory regions of the brain (the
rostral ventrolateral medulla) is reduced in women
who take contraceptives28.
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Although various medicinal methods have been de-
veloped to stop neuropathic pain, not only have none
of them been completely effective but they exert many
side effects on patients. Given the many adverse ef-
fects of pharmacological medication, adjuvant non-
pharmacologic therapies play a prominent role in pa-
tients’ pain management and reduced drug consump-
tion.
In this study, we used swimming exercise as a non-
pharmacological approach to improve CCI-induced
neuropathic pain. Our results showed that exercise
reduces mechanical allodynia and thermal hyperalge-
sia in both sexes. Several studies have investigated the
hypoalgesic effect of exercise and reported that ex-
ercise improves sensory and motor performance af-
ter nerve injury 29. Furthermore, we have previously
shown that swimming exercise reduced neuropathic
pain after infraorbital nerve injury in both sexes12.
Similarly, Sumizono et al. reported the hypoalgesic
effect of treadmill exercise in rats with injured sciatic
nerves30.
Evidence has suggested the role of oxidative stress in
neuropathic pain30,31. ROS production after nerve
injury reportedly leads to oxidative stress and en-
doneurial lipid peroxidation32,33. In this study, CCI
did not increase the MDA level in male or female
neuropathic rats compared to the equivalent sham
groups. Tang et al. reported similar results, indicating
that ischemic sciatic nerve lesions cause no change in
MDA levels in male and female mice34. Conversely,
Yuceli et al. reported that MDA levels noticeably in-
creased in male rats after sciatic nerve ischemia via
femoral artery clamping35. Furthermore, contrary to
our results, Etienne et al. reported increased MDA
levels in male and female diabetic neuropathy pa-
tients36 but found no significant difference between
the sexes. Oxidative stress parameters change in re-
sponse to physical activity in a time-dependent man-
ner37, so the time of measurement will affect the de-
termined value. The inconsistency between our re-
sults and other mentioned studies may be due to ei-
ther a difference in the evaluated sample (e.g., serum
in our study, but sciatic tissue in others), a difference
in the time of measuring malonaldehyde (e.g., in our
study, one month after the intervention, but in Yuceli
et al., one day after the intervention), a difference in
the type of intervention (e.g., in our study, pressure in-
jury on the nerve, but in other studies, ischemia reper-
fusion), or a difference in the study subject (rats in our
experiment, but humans in Etienne et al.).
According to our results, exercise significantly (p
< 0.01) reduced MDA levels in the male neuro-
pathic rats but not in the female neuropathic rats.

Jiankang38 and Shirvani39 separately showed that
physical training decreases MDA levels compared to
a control group.
Physical training reportedly increases parasympa-
thetic nervous system activity 40. Increased parasym-
pathetic tone has an anti-inflammatory effect by sup-
pressing cytokine release41. In this study, financial
limitations prevented us from evaluating inflamma-
tory mediators such as cytokines, but in a previous
study 42, we showed the anti-inflammatory effect of
exercise in CCI-treated male rats. As pain is one of
the signs of inflammation, the observed hypoalgesia
in this studymay be due to increased parasympathetic
activity and the resulting inflammation suppression.
However, a close and direct relationship between in-
flammation and oxidative stress also exists43; there-
fore, the reduction of inflammatory factors through
the attenuation of oxidative stress may reduce neuro-
pathic pain.
We observed that the FRAP levels of neuropathic rats
of both sexes were not significantly different from the
sham groups. In addition, the FRAP levels of male
neuropathic rats were not significantly different from
those of female neuropathic rats. Heidari et al. ob-
served that FRAP levels were significantly lower in fe-
male diabetic neuropathic patients compared to fe-
male diabetic patients without neuropathic pain44.
Furthermore, Etienne et al. reported that FRAP level
was significantly lower in male and female patients
compared to their control groups, but there was no
significant sex difference36. The difference between
our results and those of the researchers mentioned
above may reflect aspects such as the time of FRAP
measurement or the examined subjects. In this study,
we examined the serum level of FRAP at 4weeks post-
surgery, when the level of this parameter may have re-
turned to control levels, as previously we showed that
the FRAP level was significantly reduced 3 weeks af-
ter sciatic nerve CCI in male rats42. In addition, the
difference between our results and Etienne et al.’s and
Heidari et al.’s may be due to the difference in the ex-
amined species. Importantly, as in malondialdehyde,
the total antioxidant capacity may also change over
time.
Our result showed that exercise led to a significant in-
crease in the FRAP levels of male neuropathic rats but
not female neuropathic rats. These results align with
Rytz et al., who showed that aerobic exercise promi-
nently increased FRAP levels in men with metabolic
syndrome but not in women with the same prob-
lem45. Jolien Hendrix also reported that repeated ex-
ercise increases total antioxidant capacity and exerts
hypoalgesia in male rats46. Previously, we showed
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that 3 weeks of treadmill exercise increased FRAP
levels in CCI-treated male rats42. Human and an-
imal studies show that sex hormones, especially es-
trogen, exert antioxidant and neuroprotective effects,
and estrogen’s role is more pronounced than testos-
terone’s47.
In addition to reproduction, estrogen plays a role
in immune system performance through receptors
on immune cells, such as lymphocytes, monocytes,
and macrophages48. Estrogen prevents cytokine re-
lease by inhibiting microglia and astrocytes49. Mean-
while, as mentioned earlier, there is a close and di-
rect relationship between inflammation and oxidative
stress50, so cytokines can stimulate oxidative stress
and vice versa51. Therefore, estrogenmay prevent ox-
idative stress by inhibiting the release of inflamma-
tory agents. The levels of vitamin E and glutathione
peroxidase enzyme activity are high in female rats9,
and these levels may have prevented oxidative stress
and, therefore, limited changes in malondialdehyde
and FRAP levels. Confirming this possibility, other
studies have shown that themitochondrialDNAdam-
age caused by oxidative stress products is significantly
reduced in female rats compared to male rats52. Sev-
eral studies have indicated the direct protective ef-
fect of estrogen against oxidative stress damage in the
heart and liver53,54. In vitro reports have shown that
the protective effect of estrogen and progesteronemay
be mediated through antioxidant properties or ge-
nomic effects55. According to the mentioned stud-
ies, which have shown that the amount and activity
of antioxidant enzymes are higher in female than in
male organisms, the stronger antioxidant potential in
females may prevent oxidative stress or neutralize it
in the initial stages. Therefore, the protective and an-
tioxidant properties of estrogen may have prevented
the changes in malondialdehyde and FRAP levels that
were observed in male rats during this study.
Reportedly, in castrated male rats, MDA and the an-
tioxidant power of plasma significantly increased and
decreased, respectively, and either continuous ex-
ercise or testosterone therapy significantly reversed
these trends toward control levels56. Moderate-
intensity exercise has been shown to not only increase
testosterone levels57 but also potentiate the effects of
testosterone58. According to the literature, it is pos-
sible that in our study, exercise increased the level
of testosterone in male neuropathic rats, thereby de-
creasing the level of malondialdehyde and increas-
ing the FRAP level. This mechanism should be stud-
ied further to increase the reliability of the conclu-
sions. Although financial constraints prevented us
from using sex hormone antagonists or measuring

testosterone levels in the rat sample, doing so would
permit us to ascertain whether the reducing oxidative
stress response effects of exercise could be attributed
to sex hormones. This is one of the limitations of this
study.

CONCLUSION
In this study, we did not detect oxidative stress in
neuropathic rats of either sex but affirmed that exer-
cise improves oxidative stress parameters inmale rats.
There may be an association between male sex hor-
mones and oxidative stress suppression by exercise
that does not manifest in females. The potential an-
tioxidative properties of female sex hormones do not
appear to be affected by exercise.

ABBREVIATIONS
CCI: Chronic Constriction Injury, FRAP: Ferric-
reducing ability of plasma, MDA: Malondialdehyde,
NMDAR: N-methyl-D-aspartate acid receptor, ROS:
Reactive Oxygen Species, RPM: Revolutions Per
Minute
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