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ABSTRACT
Objective: Inflammation plays a pivotal role in the pathogenesis of stroke. However, the proteins
that initiate inflammatory responses remain unclear. In this study, we utilize proteomics to identify
the core protein in acute ischemic stroke (AIS) patients and verify the relationship of the protein
with NOD-like receptor protein 3 (NLRP3). Methods: Peripheral blood from AIS patients and pa-
tients without AIS was collected and analyzed using a quantitative proteomic method (label-free)
to screen for differential proteins. Subsequently, the differential protein was validated by ELISA. Ad-
ditionally, a middle cerebral artery occlusion (MCAO)model was utilized to explore the relationship
betweenmannose-binding lectin 2 (MBL2) and NLRP3. Co-immunoprecipitation (Co-IP) and west-
ern blot were also used to validate the interaction between the proteins and NLRP3. Results: A
total of ten AIS patients and controls were enrolled in the proteomics study. Compared with the
control group, a total of 49 proteins were identified as potential proteins. Among these proteins,
MBL2 was notably increased in the AIS group and selected for further analysis. Subsequent ELISA
analysis confirmed a significant elevation of MBL2 levels in stroke patients (P < 0.001). Further, in
animal studies, Co-IP assays showed an interaction between MBL2 and NLRP3 proteins in cerebral
tissue after ischemic infarction. Western blot results demonstrated that the expression levels of
NLRP3 andMBL2 were significantly increased in MCAO rats. Conclusions: Our results suggest that
MBL2 may be one of the promoters of inflammation by interacting with NLRP3 in AIS patients.
Key words: Ischemic stroke, Neurons, Inflammation, MBL2, NLRP3

INTRODUCTION
Stroke, characterized as a neurological deficit of cere-
brovascular cause, is one of the leading causes of death
and neurological disorders worldwide. As a chronic
non-communicable disease, stroke poses a substantial
threat to public health. In addition to the heavy so-
cial and economic burden, the sequelae and complica-
tions of physical disorders caused by ischemic stroke
seriously affect the quality of life of patients1,2. Early
intervention is crucial for stroke patients; however, ef-
fective targets for intervention remain elusive.
Inflammation plays a pivotal role in the pathogene-
sis of stroke, promoting neuronal death and inhibit-
ing nerve tissue regeneration. Mediators of inflam-
mation have long been investigated in stroke patients.
The NOD-like receptor protein 3 (NLRP3) inflam-
masome is a multi-protein signaling complex inte-
gral to the chronic inflammatory response. It has
been reported that the expression of the NLRP3 in-
flammasome (including constituent proteins NLRP3,
ASC, and pro-Caspase-1), pro-IL-1β , and pro-IL-18
increases dramatically in neurons, astrocytes, andmi-
croglia in the ischemic core area of cerebral infarc-
tion3. The NLRP3 inflammasomes can cause the re-

lease of IL-1β and IL-18 after activating Caspase-1,
triggering a series of inflammatory cascades and me-
diating the occurrence of ischemic stroke4. Neverthe-
less, the specific mechanism is still not quite clear.
Proteomics has been playing an important role in
biomedical research in recent years. Through pro-
teomics, the occurrence and development of diseases
can be comprehensively explained5. By using pro-
teomics, Lee et al. reported four coagulation cascade
proteins showed higher expression levels in patients
with stroke, and they speculate these blood coagula-
tion proteins may help in diagnosing stroke more ac-
curately and quickly 6. Recently, the use of proteomics
in human studies investigating stroke has been in-
creasing. Plasma proteins that serve as biomarkers
have been identified as changed in various diseases;
however, the interpretation of the protein is challeng-
ing7,8. In this study, we employed a quantitative pro-
teomics approach to detect the differential expression
of proteins in the peripheral blood of acute ischemic
stroke (AIS) patients and identified the relationship of
the target protein with the inflammation process dur-
ing AIS.
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METHODS
Recruitment of Ischemic Stroke Patients
A total of 20 patients were enrolled in our study. Of
them, 10 patients were diagnosed with AIS, and an-
other 10 patients without AIS were enrolled as the
control group. The average age of ischemic stroke pa-
tients was 62.7 ± 6.98 years, and that of the control
patients was 59.7 ± 7.15 years. The peripheral blood
(plasma) of patients was collected and analyzed using
a quantitative proteomic method (Label-free). All pa-
tients signed informed consent forms, and this study
was approved by the ethics committee of the Beijing
Tiantan Hospital.

Experimental Animals
Male SD rats with an initial weight of 220± 10g were
purchased from Beijing Weitonglihua Experimental
Animal Technology Co., LTD. Experimental animal
production license No.: SCXK (Beijing) 2021 - 0006.
All rats were fed in separate cages at (22± 2) ◦C, with
relative humidity at (45± 5)% and a 12-hour light cy-
cle in the Laboratory Animal Center of Capital Medi-
cal University. All animal experiments were approved
by the Ethics Committee of Capital Medical Univer-
sity.

Proteomic Detection
The proteins in the blood samples were extracted
and quantified. A total of 50 µg of protein was
taken for pre-processing. All samples were examined
by Label-free protein mass spectrometry using Or-
bitrap Fusion Nanoscale reverse-phase chromatogra-
phy (Thermo Fisher Scientific, model: Orbitrap Fu-
sion). The original mass spectrometry files were pro-
cessed by MaxQuant software. The differential pro-
teins were analyzed using cluster volcano maps and
heat map. Gene Ontology Resource (https://geneon
tology.org/) and KEGG database (Kyoto Encyclope-
dia of Genes and Genomes, https://www.genome.jp/
kegg/) were used for protein function annotation and
pathway analysis. Cytoscapewas used tomap the pro-
tein interaction network.

Detection of Mannan-binding Lectin-2
(MBL2) Level by ELISA
Blood samples were diluted 200 times prior to the ex-
periment. Subsequently, the diluted samples were in-
cubated overnight at 4◦Con anELISAAssay Plate (In-
vitrogen product No. EHMBL2, 96 tests). Following
incubation, the plate was washed four times with 1X
washing buffer. Next, 100 µ l of biotin was added to

each well and incubated at room temperature for 1
hour. The supernatant was then discarded, and the
plate was washed four times with 300 µ l of 1X wash-
ing buffer. Subsequently, a diluted HRP solution was
added to each well and incubated at room tempera-
ture for 45 minutes. Following another four washes
with 1X washing buffer, 100 µ l of TMB substrate was
added to each well and incubated at room temper-
ature for 30 minutes. Finally, the reaction was ter-
minated by adding 50 µ l of termination solution to
each well, and the absorbance was measured using a
Thermo Fisher Scientific Multiskan FC plate reader.

Animal Model
The MCAO model was established as follows: rats
were randomly divided into control group and model
group. After anesthesia, the common carotid, exter-
nal carotid, and internal carotid arteries were sepa-
rated by a glass minute hand. The common carotid
artery and external carotid artery were ligated; the
internal carotid artery was temporarily closed using
an artery clamp, and then the common carotid artery
was cut at an oblique angle. The artery clamp was re-
moved after the thread plug was placed into the neck,
and the blood vessel was closed. The wound was su-
tured, and rats were placed on a heating blanket to re-
cover. Upon awakening, successful establishment of
the MCAOmodel was confirmed if the rats exhibited
an unsteady gait, left limb paralysis, and circling be-
havior when the tail was lifted (N = 3). The rats in the
control group only had their blood vessels exposed
and their skin sutured without any treatment. After
cerebral vascular occlusion for 24 hours, all rats were
euthanized and the brains (with cerebral infarction)
from each group were collected.

Co-immunoprecipitation (Co-IP) between
MBL2 and NLRP3
A total of 15mg of brain tissue was extracted and ho-
mogenized on ice for 1 hour. After that, the samples
were centrifuged at 12000 rpm at 4◦C for 10 minutes,
and the supernatant was retained to obtain the total
protein. The interaction between MBL2 and NLRP3
was tested using theThermo Scientific PierceTM Clas-
sic IP Kit (item 26146).

Western Blot Analysis
Approximately 0.5 g of rat brain tissues with cere-
bral infarction area were added to RIPA lysis buffer
containing 1% protease inhibitor. The total protein
content was measured by the BCA method. The
proteins were initially separated using an SDS-PAGE
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gel and then transferred onto a PVDF membrane.
The membrane was incubated with 5% skim milk at
room temperature for 1 hour, then the membrane
was subsequently exposed to the following antibodies:
MBL2 (Invitrogen, NO.: PA5-106674) and NLRP3
antibody (Abcam Corporation, No.: ab263899). In-
cubate overnight in a shaker at 4◦C. The next day,
after washing the membrane with TBST three times,
the corresponding secondary antibody was incubated
for 1 hour at room temperature. Finally, chemilumi-
nescence was performed using an ECL luminescent
reagent.

Statistical Methods
Statistical analysis was performed using SPSS 22.0
software (IBM, Armonk, NY, USA). Group compar-
isons were assessed using Student’s T-test, with statis-
tical significance defined as P < 0.05. Proteins identi-
fied through proteomics were considered significantly
different if they exhibited a fold change ≥ 1.2 or ≤
0.83, with P < 0.05 compared to the control group.
Gene Ontology (GO) annotation was utilized to char-
acterize molecular functions, cellular components,
and biological processes associated with the identi-
fied proteins. Additionally, KEGG pathway analysis
was employed to investigate the signaling pathways
involving these differential proteins.

Figure 2: The ELISA result of MBL2 level in Acute
ischemic stroke and relative control group. Pa-
tients with AIS show a great increase of MBL2 level
when compared with control group. Abbrevia-
tions: AIS: Acute ischemic stroke, ELISA: Enzyme-
linked immunosorbent assay, MBL2: Mannose-
binding lectin 2, ** p < 0.001

RESULTS
Proteomic results
The samples were analyzed using a quantitative pro-
teomic label-free method. Forty-nine proteins were

Figure 3: The interaction of MBL2 protein and
NLRP3 protein in rat brain were detected by Co-
IP.Abbreviations: Co-IP: Co-immunoprecipitation,
MBL2: Mannose-binding lectin 2, NLRP3: NOD-like
receptor protein 3

found to have significant differences (fold change
≥1.2, P < 0.05) in patients with ischemic stroke. Of
these differential proteins, 15 were up-regulated, and
34 were down-regulated (Figure 1A). The differential
proteins between AIS patients and controls were clus-
tered using a heatmap (Figure 1B). GO analysis re-
sults show that the most enriched GO terms mainly
focused on acute-phase response and inflammatory
response (Figure 1C). These proteins are involved in
multiple pathways such as complement system activa-
tion and cell defense (Figure 1D). Additionally, PPI
analysis of differential proteins identified MBL2 as a
protein for further study (Figure 1 E).

The expression of MBL2 level detected by
ELISA
To validate the findings from proteomics, we utilized
ELISA to analyze Mannose-binding lectin 2 (MBL2)
levels in peripheral blood samples from patients with
acute ischemic stroke. There were 22 patients in each
group. The ELISA results showed that the MBL2 pro-
tein level in the AIS group increased significantly (P <
0.01) (Figure 2).

MBL2 and NLRP3 Co-IP results
To further analyze the relationship between acute is-
chemic stroke and MBL2 elevation, we investigated
the relationship between MBL2 and NLRP3 in the
MCAOmodel using Co-IP.The Co-IP results showed
some interaction between the MBL2 protein and the
NLRP3 protein (Figure 3).

The Expression of NLRP3 andMBL2 in brain
tissue detected byWestern blot
Western blot results showed that the expressions of
NLRP3 (p < 0.01) and MBL2 were significantly in-
creased (p < 0.001) in the early stage of cerebral in-
farction (Figure 4).
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Figure 1: Proteomic analysis of differentially expressed proteins in peripheral blood of patients with acute
ischemic stroke. (A) differentially expressed protein volcano map; (B) differentially expressed protein heat map;
(C) KEGG analyzed the pathways involved in differentially expressed proteins; (D) Go analysis of the differential
proteins which were up regulated in AIS patients. (E) Interaction analysis diagram of differentially expressed pro-
teins. Abbreviations: KEGG: Kyoto Encyclopedia of Genes and Genomes
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Figure 4: The expression of MBL2 and NLRP3 proteins in the brain tissue of MCAO rats by Western blot.
There was a significant increase of MBL2 and NLRP3 protein level in MCAO rats brain. Abbreviations: MBL2:
Mannose-binding lectin 2, MCAO: Middle cerebral artery occlusion, NLRP3: NOD-like receptor protein 3; ** p <
0.001, ***p < 0.001

DISCUSSION
Ischemic stroke is characterized by the occlusion of
brain tissue blood supply, leading to ischemia, hy-
poxic necrosis, and subsequent neurological deficits9.
It is the most common type of stroke, accounting for
about 70-80% of all stroke types, and is character-
ized by high mortality and disability 10. In this study,
we observed a significant increase in MBL2 levels in
patients with acute ischemic stroke. Subsequently,
we investigated the association between MBL2 and
NLRP3 in an animal model. Based on these find-
ings, we hypothesize that elevated MBL2 levels early
in acute ischemic stroke may interact with NLRP3,
initiating inflammation in the infarcted brain tissue
and ultimately resulting in neuronal death. To our
knowledge, this is the first study to address the rela-
tionship betweenMBL2 andNLRP3 in acute ischemic
stroke.
TheMBL2 gene encodes a 24 kDa polypeptide charac-
terized by a 248-amino-acid sequence, first identified
by Taylor and Sastry in 198911. Alvaro Cervera et al.
highlighted significant associations between MBL2
polymorphisms and adverse outcomes at 3 months
post-stroke. Their study found that patients with mu-
tations in theMBL2 gene locus are linked to lower lev-
els of C3, C4, CRP, and favorable outcomes12. Attila

Szabo et al. conducted a study on 82 patients who
underwent carotid endarterectomy and found that
the incidence of restenosis after endarterectomy was
closely related to the MBL2 genotype. The restenosis
rate in wild-type homozygousMBL2 patients was sig-
nificantly higher than in MBL2 mutant patients13. In
this study, we also found that MBL2 levels are signifi-
cantly increased both through proteomics and ELISA.
The reasons are still not understood.
As a highly conserved acute-phase protein, MBL2 be-
longs to the C-type lectin superfamily. It is the most
important first-line inflammatory immune molecule
in host non-specific immunity, capable of selectively
recognizing the sugar structure of various pathogens
and activating the complement system14. Under
stress, the concentration of MBL2 increases sharply
in blood and local tissues, which can regulate the ac-
quired immune response and local inflammatory re-
sponse15. It has been confirmed that complement
activation plays a key role in the pathogenesis of
cerebrovascular diseases16. Shen et al. found that
serum MBL and inflammation-related factor levels
in the serum were significantly increased 3 days af-
ter surgery in patients with aneurysmal subarach-
noid hemorrhage who underwent interventional em-
bolization17. Additionally, Neglia demonstrated that
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MBL can exert a direct deleterious effect on ischemic
brain endothelial cells18. Furthermore, a cohort in-
volving 7588 patients with type 2 diabetes highlighted
that serum MBL level was a major risk factor for car-
diovascular disease19.
The lack of oxygen, glucose, and lipid supply in the
brain tissue leads to the death of neurons around the
infarction site. Effective strategies to mitigate early
neuronal death following cerebral ischemia remain
a major focus and challenge in clinical practice19.
The complement system, primarily synthesized in the
liver, can enter the brain through the disrupted blood-
cerebrospinal fluid barrier. As the main effector of
innate immunity, complement activation can lead to
an inflammatory response and have harmful effects
on the nervous system20–22. Studies by Liang et al.
have demonstrated that the concentrations of C3 and
CRP in acute ischemic stroke patients were signifi-
cantly higher than those of healthy control groups up
to 14 days after disease onset23. Complement ac-
tivation can occur via various pathways, including
the bypass activation pathway and the lectin path-
way. The lectin pathway is initiated byMBL andMBL-
associated serine protease (MASP) and may play a
vital role in ischemia-reperfusion injury in patients
with acute ischemic stroke14. By binding to sugar
groups on the cell surface, MBL activates the lectin-
complement pathway, promoting the agglutination
and clearance of pathogens by phagocytes, thereby
protecting the host from invasion for a short period.
In the case of tissue injury, MBL is rapidly deposited
on target cells and triggers downstream complement
activation during the acute phase, thus enhancing C3
cleavage24.
Excessive activation of MBL2 can lead to an im-
balanced pro-inflammatory response, highlighting its
potential harmful effects. Although the clinical im-
pact of MBL has been extensively studied, the mech-
anism by which it promotes inflammation is still not
clear. In this study, we focused on the relationship
between MBL2 and NLRP3 and found an interaction
between these two proteins. NLRP3 is an intracellu-
lar sensor that can detect endogenous danger signals
and environmental irritants, resulting in the forma-
tion and activation of the NLRP3 inflammasome. As-
sembly of the NLRP3 inflammasome leads to the ac-
tivation of pro-inflammatory cytokines IL-1β and IL-
18, which were also observed in the peripheral blood
of stroke patients25,26. We speculate that this may be
one reason for the increased inflammation level at the
onset of acute ischemic stroke.
Although we found increased MBL2 levels in the
peripheral blood of AIS patients and identified the

relationship between MBL2 and NLRP3, there are
still some limitations that should not be ignored.
Firstly, the samples for proteomics were from periph-
eral blood, which cannot reflect changes in MBL2 in-
tracranially. Cerebrospinal fluid should be used for
further analysis. Secondly, the sample for verifying
the proteomic results is too small, especially for a
stroke with high morbidity. The result needs to be
further examined in a larger cohort. Thirdly, because
the inflammation process is reported to be associated
with many proteins and cytokines, we only observed
the relationship between MBL2 and NLRP3. In addi-
tion, more studies have found the important role of
sirtuins in neuronal cells following stroke27. How-
ever, the increase in MBL2 level with sirtuins is still
not well understood and worth further exploration.
Further in-depth screening with other inflammatory
proteins and cytokines is needed.

CONCLUSIONS
In this study, using proteomics methods, we found
that the MBL2 level increased dramatically in AIS
patients. Our results may pave a path for identify-
ing clinically relevant biomarkers specific to AIS and
could further help to improve the therapeutic out-
comes of AIS. Further analysis revealed that the in-
creased MBL2 level may interact with NLRP3 to pro-
mote inflammation. Nevertheless, our study is a ten-
tative exploration; whether MBL2 could be used as
a prognostic biomarker for monitoring patients still
needs to be verified in a large cohort study. The spe-
cific mechanism of MBL2 in neurodegeneration also
warrants further exploration.

ABBREVIATIONS
AIS: Acute ischemic stroke, ASC: Apoptosis-
associated speck-like protein containing a CARD,
C-type lectin: Calcium-dependent carbohydrate-
binding protein, C3: Complement component
3, C4: Complement component 4, Co-IP: Co-
immunoprecipitation, CRP: C-reactive protein,
ECL: Enhanced chemiluminescence, ELISA:
Enzyme-linked immunosorbent assay, GO: Gene
Ontology, HRP: Horseradish peroxidase, IL-1β :
Interleukin 1 beta, IL-18: Interleukin 18, KEGG:
Kyoto Encyclopedia of Genes and Genomes, MBL2:
Mannose-binding lectin 2, MCAO: Middle cerebral
artery occlusion, NLRP3: NOD-like receptor protein
3, PVDF: Polyvinylidene fluoride, RIPA: Radioim-
munoprecipitation assay, SD rats: Sprague-Dawley
rats, SPSS: Statistical Package for the Social Sciences,
TBST: Tris-buffered saline with Tween 20, TMB:
Tetramethylbenzidine
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