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Exosomes derived frommesenchymal stem cells: A novel agent for
skin aging treatment
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ABSTRACT
Skin aging, influenced by both intrinsic and extrinsic factors, leads to structural and functional dete-
rioration characterized by wrinkles, reduced elasticity, and impaired wound healing. Mesenchymal
stem cell-derived exosomes (MSC-exos) have emerged as a promising therapeutic option, offering
multifaceted benefits for skin rejuvenation. These nano-sized extracellular vesicles exhibit excep-
tional bioavailability, biocompatibility, and immunomodulatory properties, addressing challenges
associated with conventional treatments. MSC-exos enhance collagen synthesis, modulate inflam-
mation, and promote angiogenesis through molecular pathways such as PI3K/Akt and Notch sig-
naling. Furthermore, their ability to deliver bioactivemolecules precisely to target cells underscores
their therapeutic potential in skin repair and anti-aging applications. However, challenges remain
regarding large-scale production, targeting efficiency, and regulatory frameworks, warranting fur-
ther research to translate these innovative therapies into clinical practice.
Key words: Mesenchymal stem cell-derived exosomes (MSC-exos), Skin aging, Collagen remod-
eling, Immunomodulation, Angiogenesis

INTRODUCTION
Aging of the skin is a dynamic andmultifactorial pro-
cess influenced by genetic predispositions, hormonal
shifts, and external stressors such as UV exposure, en-
vironmental pollutants, and lifestyle behaviors. This
progression manifests as structural degradation, in-
cluding wrinkles, pigmentation changes, and reduced
elasticity, alongside diminished regenerative capaci-
ties, such as impaired wound healing. While exist-
ing anti-aging therapies—ranging from topical for-
mulations to minimally invasive interventions—have
achieved varying degrees of success, their effects are
often transient and target isolated symptoms rather
than the underlying biological mechanisms.
Emerging advancements in regenerative medicine,
particularly the application of MSC-exos, offer a
groundbreaking avenue for skin rejuvenation. These
nanoscale vesicles, derived from stem cells, demon-
strate remarkable potential to rejuvenate aged skin
by orchestrating collagen remodeling, mitigating
chronic inflammation, and stimulating angiogenesis.
Unlike traditional approaches, MSC-exos provide a
holistic solution, addressing both the causes andman-
ifestations of skin aging.
This review delves into the transformative potential of
MSC-derived exosomes in combating skin aging. By
examining their unique bioavailability, immunomod-
ulatory properties, and effects on collagen and vascu-
lar networks, we aim to highlight their promise as a

next-generation therapy. Additionally, the challenges
surrounding large-scale production, delivery preci-
sion, and regulatory barriers are discussed, offering
insights into the future of this innovative field.

OVERVIEWOF SKIN AGING
The skin, the largest organ of the human body, cov-
ers an area of 2 m2 and represents approximately
15% of the total body weight in adults. Its thickness
ranges from 0.1 mm at its thinnest to 1.5 mm at its
thickest1,2. Premature photoaged skin is character-
ized by various features, including a thickened epi-
dermis, mottled discoloration, deep wrinkles, laxity,
dullness, and a rough texture3,4. A prominent man-
ifestation of aging is skin sagging, which occurs due
to the gradual loss of elasticity 5,6. In older adults,
the rate of epidermal turnover and cell desquamation
slows down, influencing the timing of aesthetic treat-
ments. Accelerating the cell cycle has been shown to
improve skin appearance and enhance wound heal-
ing, making these effects important targets for vari-
ous products and procedures. The weakening of the
dermal-epidermal junction in extrinsically aged skin
may also contribute to wrinkle formation due to the
loss of fibrillin-positive structures and a decrease in
collagen type VII content7–9. Solar elastosis, com-
monly seen in the sun-exposed skin of the elderly, re-
sults from collagen breakdown by matrix metallopro-
teinases, serine proteases, and other proteases, which
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increase collagen degradation in photoaged skin10,11.
As skin ages, the ratio of type III to type I collagen in-
creases due to a decline in collagen levels12,13. Colla-
gen content decreases by approximately 1% per year
per unit area of skin14. Numerous studies available
on PubMed have explored the impact of factors such
as oxidative stress, ultraviolet (UV) radiation, and in-
flammation on skin aging15. These studies indicate
that these factors contribute to the degeneration of
collagen and other extracellular matrix (ECM) com-
ponents, leading to wrinkles and loss of skin elasticity.
The skin has a natural ability to heal itself, involving
a cascade of processes such as hemostasis, inflamma-
tion, proliferation, and tissue remodeling. However,
when this healing process is interrupted, altered, or
prolonged, wound healingmay be delayed, or chronic
wounds may develop.

LIMITATIONS OF CURRENT
THERAPEUTIC STRATEGIES FOR
SKIN AGING
Skin aging is a complex process influenced by both
intrinsic and extrinsic factors, characterized by wrin-
kles, fine lines, irregular pigmentation, and a pro-
gressive loss of skin elasticity, firmness, and mois-
ture. Given the increasing demand for effective anti-
aging treatments, recent years have seen significant
advancements in therapeutic approaches to address
skin aging.
One widely adopted strategy involves the use of top-
ical medicines that target specific aging pathways.
These include antioxidants, retinoids, and alpha-
hydroxy acids. Retinoids, derivatives of vitamin A,
enhance collagen synthesis and reduce the appearance
of wrinkles and fine lines. Alpha-hydroxy acids, such
as glycolic acid and lactic acid, exfoliate the skin while
promoting collagen production16–18. Antioxidants
like vitamins C and E protect the skin from oxidative
damage caused by UV rays and environmental tox-
ins19–21.
Minimally invasive approaches, such as injectable
fillers and botulinum toxin (Botox) injections, are
also commonly employed. Injectable fillers, includ-
ing hyaluronic acid and calcium hydroxyapatite, re-
store skin volume and reduce the visibility of wrin-
kles22–24. Botox injections relax the facial muscles re-
sponsible for dynamic wrinkles, particularly around
the eyes and forehead25–27.
More invasive procedures, such as chemical peels and
laser resurfacing, target deeper layers of the skin to
stimulate collagen synthesis. Chemical peels are effec-
tive for treating acne scars and sun damage28, while

laser resurfacing is particularly useful for addressing
uneven pigmentation and deeper wrinkles29.
Emerging regenerative medicine approaches have
garnered attention for their potential to repair and
regenerate aged skin tissues. Stem cells and growth
factors are central to these strategies. Stem cells pos-
sess the capacity to differentiate into a myriad of
cellular phenotypes, encompassing dermal cells, and
thereby facilitating the replacement of compromised
or senescent cells. Growth factors, such as platelet-
rich plasma, stimulate collagen production and ECM
remodeling, facilitating tissue repair30,31.
Among alternative treatments, exosome-based thera-
pies are gaining traction due to their unique advan-
tages. Exosomes, tiny vesicles released by cells, in-
cluding stem cells, contain bioactive compounds like
growth factors, cytokines, and microRNAs that aid in
tissue repair and regeneration32–34. A key advantage
of exosomes is their non-immunogenic nature, min-
imizing the risk of adverse immune reactions, unlike
injectable fillers or other invasive procedures35,36.
Exosomes also address multiple aspects of skin aging
simultaneously. They enhance cell proliferation and
differentiation37, boost collagen synthesis38,39, and
reduce inflammation40,41, all of which are critical for
skin regeneration. Furthermore, exosomes can be ef-
ficiently isolated from various cell types, making them
a promising therapeutic option. Preclinical research
has shown that exosomes can enhance wound heal-
ing and stimulate tissue regeneration, as evidenced by
studies on animalmodels and in vitro experiments us-
ing human skin cells42–45.

EXOSOMES AND THEIR POTENTIAL
IN DERMATOLOGY
Exosomes are nano-sized biovesicles released into
surrounding body fluids when multivesicular bod-
ies fuse with the plasma membrane39. These vesi-
cles originate from the internal folding of endoso-
mal membranes, resulting in the formation of intralu-
minal vesicles, which are then secreted as exosomes.
Acting as mediators of intercellular communication,
exosomes transfer their cargo to target cells or ac-
tivate signaling pathways on the cell surface. They
play essential roles in physiological and pathological
processes, including immune responses, cell prolifer-
ation, tissue homeostasis, cancer, and neurodegener-
ative diseases39.
Exosomes contain a wide variety of biomolecules
sourced from their parent cells, such as proteins,
lipids, nucleic acids, and carbohydrates46. Their pro-
tein cargo comprises functional categories such as
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tetraspanins, heat shock proteins, and cytoskeletal
proteins. Lipids, like sphingomyelin and cholesterol,
are enriched in exosomes, contributing to their struc-
tural integrity and biological functions. Nucleic acids
in exosomes, including messenger RNAs, long non-
coding RNAs, and microRNAs, have the ability to
modulate gene expression in recipient cells47,48.
Exosomes impact a range of cellular processes, includ-
ing cell growth, differentiation, and apoptosis39,46.
They also play a dual role in immune regulation, either
stimulating or inhibiting immune responses depend-
ing on the context49,50. In addition, exosomes are in-
volved in the progression of various diseases, such as
cancer, cardiovascular diseases, and neurodegenera-
tive disorders, underscoring their potential for diag-
nostic and therapeutic applications51.
In regenerative medicine, exosomes derived from
MSC-exos offer significant advantages over tradi-
tional live stem cell therapies. While adipose-derived
stem cells (ADSCs) have shown limited efficacy due
to apoptosis shortly after transplantation52,53 and
challenges related to circulation and thrombus for-
mation54,55, MSC-exos mitigate these issues. Intra-
venous injection of MSCs may cause aggregation in
microcirculation and pose risks of mutagenicity or
oncogenicity, risks that are absent with MSC-exos.
Additionally, MSC-exos remain stable during long-
term storage, facilitating safe transport and delayed
therapeutic application.
The potential of exosomes in treating skin abnormal-
ities has been extensively explored in recent years.
Their primary advantages include stability, resistance
to immunological rejection, and the capacity to di-
rectly stimulate target cells. Unlike conventional
treatments, exosomes can exert multiple therapeutic
effects through a single component, making them a
versatile and promising option for clinical applica-
tions.

MSC-DERIVED EXOSOMES IN SKIN
AGING TREATMENT
Bioavailability and Delivery Mechanisms
Exosomes, derived from the late endocytic com-
partment, diffuse easily into intracellular fluids and
rapidly fuse with target cells, enhancing their poten-
tial for therapeutic delivery. They exhibit exceptional
interaction with cellular membranes, which is crucial
for efficient drug delivery. Recent in vivo studies have
shown that exosomes exhibit specific cell tropism,
guiding them to disease-affected tissues and organs56.
This targeting ability is a result of both their intrin-
sic properties and engineered modifications. Exo-
somes express unique surface proteins that enhance

their natural ability to bind to specific cell types, facil-
itating efficient targeting and drug delivery 57.
The lipid bilayer structure of exosomes contributes
to their low immunogenicity, allowing prolonged cir-
culation and reducing the risk of immune rejection.
Their natural structure also helps maintain integrity,
ensuring that they protect their cargo until reach-
ing the target site58–60. Furthermore, exosomes are
biodegradable, reducing long-term toxicity risks com-
pared to synthetic carriers thatmay persist in the body
and cause chronic inflammation61,62.
Genetic modifications can enhance the targeting ca-
pabilities of exosomes. Incorporating homing pep-
tides and ligands allows exosomes to be directed to
specific organs or tissues, improving therapeutic ef-
ficacy 59. These modifications can also facilitate on-
demand drug release in response to specific stimuli,
enhancing precision in drug delivery 58. Addition-
ally, surface proteins such as tetraspanins and inte-
grins improve exosomes’ natural targeting ability, en-
suring efficient delivery to the intended tissues57. En-
gineered exosomes can also express chemokine recep-
tors to enhance their tropism toward inflamed tissues,
which has been demonstrated in treatments for con-
ditions like atherosclerosis63. This ability is further
supported by transcytosis, a process enhanced by fac-
tors such as inflammation64.
Despite their promise, exosomes’ targeting efficiency
can be inconsistent, and their production remains
challenging. Synthetic alternatives may offer more
controlled delivery mechanisms, highlighting the
need for further optimization of exosome engi-
neering60. Exosome production involves extensive
cell culture and purification processes, which are
resource-intensive and time-consuming. Variability
in exosome composition requires rigorous quality as-
sessment to ensure therapeutic efficacy 65,66. Ad-
ditionally, the lack of standardized manufacturing
guidelines is a significant barrier67. The regulatory
landscape for exosome-based therapies is complex,
varying by jurisdiction, and requires comprehensive
pharmacokinetic and therapeutic efficacy data, along
with toxicology studies and potency assays to ensure
safety and efficacy in clinical settings68. Low yield
and batch reproducibility further limit their scalabil-
ity, posing another challenge for widespread clinical
application. While the potential of exosomes as ther-
apeutic agents is significant, these challenges must be
addressed through ongoing research. Optimization
of production methods, improvements in targeting
precision, and regulatory advancements are crucial to
unlocking the full therapeutic potential of exosomes.
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Low Immunogenicity and Safety Profile
MSC-exos have attracted considerable interest due to
their immunomodulatory and regenerative capabili-
ties. They increase Treg production in vivo and in
vitro through TGF-α and IFN-γ 69.
MSC-exos regulate pattern recognition recep-
tors (PRRs), modulate B-cell activities, polarize
macrophages toward anti-inflammatory phenotypes,
and fine-tune T-cell activity. These processes or-
chestrate diverse immunological responses, making
MSC-exos valuable for precision medicine and
therapeutic interventions70.
MSC-exos primarily induce M2-like macrophage po-
larization through CD73 activity, which converts
AMP to adenosine. This adenosine activates A2A and
A2B receptors, triggering AKT/ERK signaling path-
ways that alleviate inflammation and immune dys-
function71. Furthermore, MSC-exos pre-treated in
a diabetic environment (Exo-pre) enhance M2 po-
larization via miR-486-5p, which targets PIK3R1 and
modulates the PI3K/Akt pathway 72.
Additionally, miR-150-5p within MSC-exos down-
regulates the PI3K/Akt/mTOR pathway by targeting
Irs1 in recipient macrophages, promoting M2 polar-
ization and inhibiting M1 activation73. They also in-
hibit LPS-induced inflammatory responses, increase
IL-10 and Arg-1 levels, enhance CD206 expression,
reduce NF-κB signaling, and stimulate STAT3 ac-
tivity, further supporting M2 macrophage polariza-
tion74. In vivo studies show MSC-derived extracel-
lular vesicles enhance M2 macrophage polarization,
providing a novel therapeutic strategy to mitigate in-
flammatory conditions75.
MSC-exos modulate T-cell activity by decreasing
T-cell proliferation and Th1 differentiation while
promoting Treg differentiation and restoring the
Th17/Treg balance. These effects are mediated
through pathways involving TGF-β and autophagy,
as demonstrated in studies on primary Sjögren’s syn-
drome76,77. MSC-exos also promote the generation
of IFN-γ+/Foxp3+ T cells with suppressive capac-
ity and influence Th1 metabolism. Proteins such as
p27kip1 and Cdk2 play significant roles in cell cy-
cle arrest and T-cell suppression mediated by MSC-
exos78. Moreover, exosomes enriched with CD73
can inhibit T-cell proliferation, modulate T-cell differ-
entiation, and enhance immunosuppressive effects,
making them potential therapeutic agents for autoim-
mune diseases79.
MSC-exos reduce neutrophil infiltration, attenuate
NLRP3 inflammasome activation, and suppress the
formation of neutrophil extracellular traps (NETs).

They achieve this by up-regulating miR-199 in neu-
trophils, thereby decreasing NETs expression after
stimulation80.

EffectsonCollagenSynthesis andRemodel-
ing

Managingwound healing is a complex process involv-
ing sequential, overlapping stages, where disruptions
can lead to chronic, non-healing wounds. Collagen,
a critical component of the ECM in the dermis, pro-
vides structural integrity and support to the skin81. In
aging skin, collagen type I and elastic fibers become
fragmented, causing dermal layer damage and im-
pairing skin elasticity 82,83. Reconstructing the der-
mal structure can potentially mitigate aging effects
and improve wound healing.
Several treatment options have been explored to
counteract collagen degradation. Topical agents such
as retinoids, alpha-hydroxy acids, and antioxidants
stimulate collagen synthesis and inhibit its break-
down, but their effects are often limited and require
prolonged use84–86. Invasive procedures like laser
resurfacing, micro-needling, and injectable fillers can
improve skin texture and reduce wrinkles. However,
these methods carry risks such as scarring and infec-
tion84,87–91.
Exosomes, nano-sized extracellular vesicles, offer a
promising alternative. They can be applied topi-
cally or injected into the skin, allowing precise deliv-
ery to the dermis while minimizing systemic side ef-
fects. Exosomes contain bioactive molecules, includ-
ing growth factors and cytokines, which promote an-
giogenesis and tissue remodeling91–93. Derived from
various cell types, exosomes can influence collagen
metabolism by breaching the epidermal barrier and
interacting with target cells to regulate ECM home-
ostasis94,95.
MSC-exosomes exhibit remarkable capability in de-
livering functional molecules, including proteins,
lipids, mRNAs, and miRNAs, to recipient cells. Their
phospholipid bilayer enables efficient delivery, influ-
encing cellular processes like gene regulation, im-
mune modulation, and tissue repair96–99. MSC-
exosomes can enhance collagen production and re-
duce breakdown, particularly in fibroblasts, leading to
smoother, more elastic skin95,100–103. They also ad-
dress oxidative stress and inflammation, major con-
tributors to skin aging104,105.
MSC-exosomes are a promising strategy for treating
skin disorders characterized by collagen dysregula-
tion. These exosomes regulate collagen synthesis and
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degradation in fibroblasts by modulating the expres-
sion of key genes and pathways. For instance, they en-
hance the expression of collagen-related genes such as
col1a1 while reducing the levels ofmatrixmetallopro-
teinases (MMPs) and increasing the expression of tis-
sue inhibitors of metalloproteinases (TIMPs), thereby
preserving the balance of the ECM100,106. Further-
more, MSC-exosomes contain miRNAs, such as miR-
34b-3p andmiR-144-3p, which regulate fibroblast be-
havior and collagen metabolism through pathways
like PI3K/Akt107–109.
During the early stages of wound healing, MSC-
exosomes enhance type I and III collagen forma-
tion, promoting effective tissue regeneration. In later
stages, they limit excessive collagen deposition, re-
ducing scar formation. For instance, ADSC-derived
exosomes adjust the type III-to-type I collagen ra-
tio, aiding in balanced tissue repair110,111. Exosomes
rich in miR-21-5p and miR-125b-5p suppress TGF-
β receptors, preventing myofibroblast differentiation
and promoting better skin regeneration112. Addi-
tionally, UCB-MSC-exos inhibit collagen I produc-
tion while encouraging skin cell proliferation andmi-
gration, further optimizing wound healing outcomes.

Promotion of Angiogenesis

Aging induces significant morphological and func-
tional changes in cutaneous blood vessels, impacting
overall skin health and vascular functionality. Struc-
tural remodeling includes vascular adventitia thick-
ening and a decrease in the density of skin lymphatic
vessels, impairing fluid transport and immune re-
sponses113,114. Functional decline manifests through
reduced vasomotor function, increased blood viscos-
ity, and heightened platelet aggregation, compromis-
ing vascular health. Furthermore, aging diminishes
the ability of blood vessels to respond to stimuli, evi-
denced by reduced skin bloodflowand impaired post-
occlusive hyperemia115.
Endothelial dysfunction in aging cutaneous blood
vessels is marked by reduced nitric oxide (NO) pro-
duction, increased oxidative stress, and impaired va-
sodilation. Aging reduces NO bioavailability due
to heightened superoxide anion production, leading
to vascular dysfunction116,117. This dysfunction af-
fects nutrient delivery and waste removal in skin
tissues, contributing to skin sagging, dryness, and
wrinkle formation, all hallmarks of declining skin
health116,118 . Increased vascular stiffness further ex-
acerbates these conditions, reflecting overall skin ag-
ing.

Exosomes, especially those originating from MSCs
and endothelial cells, play a key role in angiogene-
sis. They transport pro-angiogenic factors, including
VEGF and bFGF, to target cells, thereby stimulating
endothelial cell proliferation, migration, and the for-
mation of blood vessels119,120. Both in vivo and in
vitro studies show that exosomes derived from MSCs
promote wound healing and angiogenesis. This is ev-
ident in diabetic skin ulcer models, where they accel-
erate wound closure and the formation of new blood
vessels121–123.
MSC-derived exosomes promote angiogenesis and
improve skin health through various molecular path-
ways. Exosomal miR-126 activates the PI3K/Akt sig-
naling pathway, enhancing VEGF and angiopoietin-1
expression, thereby stimulating endothelial cell pro-
liferation and migration124,125. Exosomal miR-17-
92 further supports angiogenesis by inhibiting fer-
roptosis and enhancing endothelial cell functions126.
MicroRNA-125a, found in adipose-derived MSC ex-
osomes, suppresses the angiogenic inhibitor DLL4,
promoting the formation of endothelial tip cells120.
MSC-derived exosomes exhibit anti-aging effects on
skin vasculature by regulating angiogenic factors and
improving collagen production. These exosomes
stimulate dermal fibroblast proliferation, migration,
and collagen deposition, facilitating tissue regenera-
tion and wound healing127. Additionally, exosomal
Jagged1, derived fromHIF-1α-overexpressingMSCs,
enhances angiogenesis via Notch signaling activation
in endothelial cells, further supporting vascular reju-
venation128.

Anti-inflammatory and Immunomodula-
tory Effects
Chronic inflammation significantly contributes to
skin aging through mechanisms often referred to as
”inflammaging.”This persistent low-grade inflamma-
tion accelerates cellular senescence and disrupts skin
homeostasis. The accumulation of senescent cells
triggers the secretion of pro-inflammatory factors,
known as the senescence-associated secretory pheno-
type, which perpetuates inflammation and induces
further senescence in neighboring cells129,130. Ag-
ing is also associated with immunosenescence, a de-
cline in the immune system’s ability to manage in-
flammation, leading to increased senescent cells and
inflammatory mediators131. External factors like
UV radiation and pollutants exacerbate this process,
with UVB-induced inflammation being mediated by
molecules such as nitric oxide, prostaglandin E2, and
cytokines like IL-1 and IL-6, predominantly regulated
by NF-κB in keratinocytes132.
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Figure 1: The beneficial role of MSC-derived exosomes in skin rejuvenation. MSC-derived exosomes are es-
sential in skin treatment due to their superior bioavailability and low immunogenicity. They efficiently penetrate
tissues and are safe for therapy. These exosomes also possess immunomodulatory properties, reducing inflam-
mation and promoting immune balance. They stimulate collagen production and prevent its breakdown, thus
improving skin texture. Additionally, they promote angiogenesis, addressing vascular changes in aging skin. Ex-
osomes have anti-inflammatory properties, providing protection against inflammation-related damage.

Chronic inflammation disrupts epidermal balance,
leading to common aging features like skin thinning
and a weakened barrier [3]. Pro-inflammatory cy-
tokines, such as IL-1β and TNF-α , stimulate the pro-
duction of matrix metalloproteinases (MMPs) and
cathepsins, enzymes that break down the ECM, par-
ticularly collagen. This ECM breakdown results in
reduced skin elasticity and wrinkle formation133,134.
Advanced glycation end products (AGEs) further
contribute to skin dysfunction by triggering oxida-
tive stress, disrupting collagen and elastin, and ampli-
fying inflammation through reactive oxygen species
(ROS)135–137.
Exosomes, which are small extracellular vesicles,
are crucial in regulating inflammation by promot-
ing communication between immune cells. Exo-
somes released from LPS-preconditioned MSCs can
alter macrophage polarization, steering it towards an
anti-inflammatory M2 phenotype through the NF-
κB/NLRP3 signaling pathway 138. Furthermore, en-
gineered exosomes loaded with anti-inflammatory
agents, such as curcumin, show potential in treating

inflammation-related conditions, including rheuma-
toid arthritis and spinal cord injuries139. Modifica-
tions like hyaluronic acid or polyethylene glycol en-
hance exosome targeting and therapeutic efficacy 138.
MSC-Exos exhibit significant anti-inflammatory ef-
fects, outperforming exosomes from other cell types.
These vesicles are enriched with microRNAs, pro-
teins, and cytokines that modulate immune responses
and reduce inflammation140,141. In skin aging, MSC-
Exos downregulate pro-inflammatory cytokines like
IL-1β and TNF-α and inhibit the NF-κB pathway,
mitigating chronic inflammation and oxidative stress
while promoting cell survival19,20. Additionally,
MSC-Exos enhance protective proteins like SIRT1
and P53, improving skin cell viability under stress
conditions142.
The anti-inflammatory potential of adipose-derived
stem cell exosomes (ADSC-Exos) has shown promise
in treating atopic dermatitis. ADSC-Exos notably re-
duce the levels of pro-inflammatory cytokines, in-
cluding IL-4, IL-13, andTNF-α , by 30-50%, in a dose-
dependent fashion143,144. Clinical studies demon-
strate their efficacy in reducing erythema, improving
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skin hydration, and lowering clinical scores over 12
weeks143. MSC-Exos similarly reduce inflammatory
cytokines like TNF-α and IL-17 in aged skin, inhibit-
ing pathways such as STAT3 and suppressing den-
dritic cell activation, contributing to a balanced im-
mune environment145,146.

CONCLUSIONS
MSC-derived exosomes represent a revolutionary ap-
proach to combating skin aging, integrating regener-
ative and immunomodulatory capabilities into a sin-
gle therapeutic platform. Their ability to modulate
collagen remodeling, reduce inflammation, and en-
hance vascularization positions them as superior to
traditional treatments in both efficacy and safety. De-
spite these advantages, significant obstacles, includ-
ing manufacturing scalability, quality control, and
regulatory hurdles, must be overcome to facilitate
widespread clinical adoption. Future research should
focus on optimizing exosome engineering, improving
delivery mechanisms, and standardizing therapeutic
protocols to unlock the full potential of this innova-
tive treatment for skin aging.

ABBREVIATIONS
ADSCs: Adipose-Derived Stem Cells, AKT/ERK:
Protein Kinase B / Extracellular Signal-Regulated
Kinase, AMP: Adenosine Monophosphate, DLL4:
Delta-like Ligand 4, ECM: Extracellular Matrix, IFN-
γ : Interferon-gammam, iRNAs: MicroRNAs,MMPs:
MatrixMetalloproteinases,MSC-exos: Mesenchymal
Stem Cell-derived Exosomes, NETs: Neutrophil Ex-
tracellular Traps, NF-κB: Nuclear Factor Kappa B,
PI3K/Akt: Phosphoinositide 3-Kinase / Protein Ki-
nase B, PRRs: Pattern-Recognition Receptors, ROS:
Reactive Oxygen Species, SIRT1: Silent Information
Regulator T1, STAT3: Signal Transducer and Activa-
tor of Transcription 3, TGF-α : Transforming Growth
Factor-alpha, Th1/Th17/Treg: T-helper cells type 1
/ type 17 / Regulatory T-cells, TIMPs: Tissue In-
hibitors of Metalloproteinases, UCB-MSC: Umbilical
Cord Blood-Mesenchymal Stem Cells
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